K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNME có 

ND là đường cao

ND là đường phân giác

Do đó: ΔNME cân tại N

b: Xét ΔNMD và ΔNED có

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

DO đó: ΔNMD=ΔNED

Suy ra: DM=DE

mà NM=NE

nên ND là đường trung trực của ME

a: Xét ΔNMK co

NE vừa là đường cao, vừa là phân giác

=>ΔNMK cân tại N

=>NM=NK

Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔMND=ΔKND

=>góc NKD=90 độ

=>DK vuông góc NP

b: Xét ΔNKM có

MH,NE là đường cao

MH cắt NE tại I

=>I là trực tâm

=>KI vuông góc MN

=>KI//MP

21 tháng 7 2018

Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!

a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có

NE chung

góc MNE=góc KNE

=>ΔMNE=ΔKNE

b: Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔNMD=ΔNKD

=>góc NKD=90 độ

=>DK vuông góc NP

12 tháng 5 2023

ơn ạ

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp

a) Xét ΔBNP có 

BA là đường trung trực ứng với cạnh PN(gt)

nên ΔBNP cân tại B(Định lí tam giác cân)

b) Xét ΔMBN vuông tại M và ΔCBP vuông tại C có

BN=BP(cmt)

\(\widehat{MBN}=\widehat{CBP}\)(hai góc đối đỉnh)

Do đó: ΔMBN=ΔCBP(cạnh huyền-góc nhọn)