K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

Xét tam giác HNM và tam giác NMP, có:

^N: chung

^NHM = ^ NMP = 90 độ

Vậy tam giác NHM đồng dạng tam giác NMP (g.g )

\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)

Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)

(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)

\(MH=\dfrac{12.16}{20}=9,6cm\)

4 tháng 5 2022

tg HNM∼tgNMP             mới đúng

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

8 tháng 4 2021

a) Xét ΔMNP và ΔHMP có:

Góc MPN chung

Góc  NMP = góc MHP (= \(90^o\))

⇒ ΔMNP ~ ΔHMP (g.g)

b) Áp dụng định lí Pytago vào Δ vuông MNP:

\(MP^2=NP^2-MN^2\)

\(MP^2=10^2-6^2\)

\(MP^2=64\)

⇒ MP = 8

Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\) 

hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5

25 tháng 3 2023

M N P H

 

 a)xét \(\Delta HMN\) và \(\Delta MNP \) 

\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)

\(\widehat{M}\) ( góc Chung)\)

\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)

 \(\)

b) Theo ddịnh lí Py-ta-go, ta có:

\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)

 

 

\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)

 

 

) Theo ddịnh lí Py-ta-go, ta có:

\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)

 

 

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)

\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)

=>HP=6,4(cm)