Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pitago:
\(MP=\sqrt{NP^2-MN^2}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(MH.NP=MN.MP\Rightarrow MH=\dfrac{MN.MP}{NP}=4,8\left(cm\right)\)
Áp dụng định lý Pitaho cho tam giác vuông MNH:
\(NH=\sqrt{MN^2-MH^2}=3,6\left(cm\right)\)
a: ΔPIM vuông tại I
=>IP^2+IM^2=MP^2
=>IM^2=10^2-6^2=64
=>IM=8(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên PI*PN=PM^2
=>PN=10^2/6=50/3(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên MI^2=IN*IP
=>IN=8^2/6=32/3(cm)
Xét ΔMNP vuông tại M có sin MNP=MP/PN
=10:50/3=3/5
=>góc MNP=37 độ
b: C=MN+NP+MP
=10+40/3+50/3
=10+90/3
=10+30
=40(cm)
c: Xét ΔIMP vuông tại I có IK là đường cao
nên IK*PM=IP*IM
=>IK*10=6*8=48
=>IK=4,8(cm)
Áp dụng PTG: \(MP=\sqrt{NP^2-MN^2}=16\left(cm\right)\)
\(\sin P=\dfrac{MN}{NP}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{P}\approx37^0\)
a: cos N=1/2
=>góc N=60 độ
góc M=90-60=30 độ
Xét ΔMNP vuông tại P có sin M=PN/NM
=>PN/8=sin30=1/2
=>PN=4cm
=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)
b: Xét ΔNMP vuông tại P có sin N=0,6=3/5
=>PM/MN=3/5
=>5/MN=3/5
=>MN=25/3
PN=căn (25/3)^2-5^2=20/3(cm)
Xét ΔNMP vuông tại P có sinN=3/5
nên góc N\(\simeq37^0\)
=>\(\widehat{M}\simeq90^0-37^0=53^0\)
c: Xét ΔMNP vuông tại P có tan N=căn 3
=>PM/PN=căn 3
=>6/PN=căn 3
=>PN=2*căn 3(cm)
MN=căn (2*căn 3)^2+6^2=4*căn 3
Xét ΔMNP vuông tại P có tan N=căn 3
nên góc N=60 độ
=>góc M=30 độ
a: NP=10(cm)
\(\widehat{P}=37^0\)
\(\widehat{N}=53^0\)
a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)
b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)
\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)