K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

26 tháng 10 2021

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

16 tháng 9 2021

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

16 tháng 9 2021

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm 

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)

a: \(MH=\sqrt{4\cdot9}=6\left(cm\right)\)

\(MP=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

\(MN=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)

b: Ta có: ΔMNP vuông tại M

mà MI là đường trung tuyến

nên MI=NP/2=6,5(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

NV
8 tháng 12 2021

Áp dụng định lý Pitago:

\(MP=\sqrt{NP^2-MN^2}=8\left(cm\right)\)

Áp dụng hệ thức lượng:

\(MH.NP=MN.MP\Rightarrow MH=\dfrac{MN.MP}{NP}=4,8\left(cm\right)\)

Áp dụng định lý Pitaho cho tam giác vuông MNH:

\(NH=\sqrt{MN^2-MH^2}=3,6\left(cm\right)\)