Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác NMP và tam giác MHP
có \(\widehat{NMP}=\widehat{MHP}\)(=90 độ )
\(\widehat{NPM}\) chung
Vậy tam giác NMP đồng dạng với tam giác MHP (g.g)
b) từ hai tam giác đồng dạng ở câu a suy ra \(\frac{NM}{MH}=\frac{NP}{MP}\)(1)
MH =\(\frac{MP\times MN}{NP}\)
tự tính nha bạn
c) Ta có tam giác NMP đồng dạng với tam giác NHM (g.g)
vì có \(\widehat{N}\) chung và \(\widehat{MHN}=\widehat{NMP}\)
suy ra \(\frac{MN}{MP}=\frac{NH}{HM}\)(2)
Từ (1) và (2) suy ra \(\frac{NH}{HM}=\frac{MH}{HP}\) rồi suy ra được điều phải chứng minh
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
Xét tam giác HNM và tam giác NMP, có:
^N: chung
^NHM = ^ NMP = 90 độ
Vậy tam giác NHM đồng dạng tam giác NMP (g.g )
\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)
Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)
(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)
\(MH=\dfrac{12.16}{20}=9,6cm\)