Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét \(\Delta MKN\) và \(\Delta QMN\) có
\(\widehat{MKN}=\widehat{MQN}=90^o\)
chung \(\widehat{MNQ}\)
=> \(\Delta MKN\) đồng dạng với \(\Delta QMN\) (g.g)
b, vì MNPQ là hình chữ nhật => MN//NP
=> \(\widehat{MQN}=\widehat{QNP}\) (so le trong)
xét \(\Delta MKQ\) và \(\Delta QPN\) có
\(\widehat{MQN}=\widehat{QNP}\) (cmt)
\(\widehat{MKQ}=\widehat{NPQ=90^o}\)
=> \(\Delta MKQ\) đồng dạng với \(\Delta QPN\) (g.g)
=> \(\frac{MQ}{NQ}=\frac{MK}{QP}\left(đpcm\right)\)
a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ
=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC
b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)
Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)
Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)
a)*Vì \(\Delta MNP\) vuông tại M
\(\Rightarrow MN^2+MP^2=NP^2\)
\(\Rightarrow6^2+8^2=NP^2\)
\(\Rightarrow NP^2=100\)\(\Rightarrow NP=\sqrt{100}=10cm\)
*Xét 2\(\Delta\)vuông HMN và HPM có
\(\widehat{HMN}=\widehat{NPM}\)(cùng phụ \(\widehat{MNP}\))
\(\Rightarrow\Delta HMN\sim\Delta HPM\)
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm