Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
ΔDEF=ΔMNP
=>DE=MN; EF=NP; DF=MP
EF+FD=10; NP-MP=2; DE=3
=>MN=3cm; EF-DF=2 và EF+FD=10
=>EF=(10+2)/2=6cm và DF=6-2=4cm
EF=NP=6cm; DF=MP=4cm
2:
a: ΔABC=ΔNMP
b: ΔABC=ΔPNM
Bài 1
Do ∆DEF = ∆MNP
⇒ DE = MN; DF = MP; EF = NP
Do NP - MP = 2 (cm)
⇒ EF - FD = 2 (cm)
Lại có
EF + FD = 10 (cm)
⇒ EF = (10 + 2) : 2 = 6 (cm)
⇒ FD = 10 - 6 = 4 (cm)
Vậy độ dài các cạnh của mỗi tam giác là:
EF = NP = 6 cm
FD = MP = 4 cm
DE = MN = 3 cm
a: Xét ΔABC và ΔAMN có
AB=AM
góc BAC=góc MAN
AC=AN
Do đó: ΔABC=ΔAMN
b: ΔABC=ΔAMN
=>góc ABC=góc AMN
=>BC//MN
c: Xét ΔAMK và ΔABI có
AM=AB
góc AMK=góc ABI
MK=BI
Do đó: ΔAMK=ΔABI
a) có BE là tia p/g của góc ABC
=> góc B1 = góc B2 = góc ABC/2 = 600 /2 = 300
có △ABC vuông tại A => △ABE vuông tại A
EH⊥BC=> △HBE vuông tại H
Xét △ vuông ABE và △vuông HBE có
góc B1 = góc B2
BE chung
=>△ vuông ABE =△vuông HBE ( cạnh huyền - góc nhọn)
b) có △ABE vuông tại A=> góc B1 + góc E1 = 900
góc E1 = 600 ( vì góc B1 = 300)
có △ vuông ABE =△vuông HBE
=> góc E1 = góc E2
mà HK//BE => góc E1 = góc K1 (ĐV)
và góc E2 = góc H1 (SLT)
=> góc E1 = góc E2 = góc K1=góc H1 = 600
=> △HEK đều
c) có góc E1 = góc E2 ; góc E3 = góc E4
=>góc E1 +góc E4 = góc E2 + góc E3
=> góc BEM= góc BEC
Xét △BEM và △ BEC có
góc B1 = góc B2
BE chung
góc BEM= góc BEC
=> △BEM = △ BEC (g.c.g)
=>BM=BC
=>△BMC cân tại B
trong △BMC có BN là đường p/g xuất phát từ đỉnh B
lại có △BMC cân tại B
=> BN cũng là đường trung tuyến xuất phát từ đỉnh B
=> N là trung điểm của MC
=> NM=NC
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-30^0=60^0\)
Ta có: CD là tia phân giác của \(\widehat{ACB}\)(gt)
nên \(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)
mà \(\widehat{DBC}=30^0\)(gt)
nên \(\widehat{DBC}=\widehat{DCB}\)
Xét ΔBCD có \(\widehat{DBC}=\widehat{DCB}\)(cmt)
nên ΔBCD cân tại D(Định lí đảo của tam giác cân)
Xét ΔACD vuông tại A và ΔHCD vuông tại H có
CD chung
\(\widehat{ACD}=\widehat{HCD}\)(CD là tia phân giác của \(\widehat{ACH}\))
Do đó: ΔACD=ΔHCD(Cạnh huyền-góc nhọn)
Suy ra: CA=CH(hai cạnh tương ứng)
Xét ΔCAH có CA=CH(cmt)
nên ΔCAH cân tại C(Định nghĩa tam giác cân)
Xét ΔCHA cân tại C có \(\widehat{ACH}=60^0\)(cmt)
nên ΔCHA đều(Dấu hiệu nhận biết tam giác đều)
b) Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan\widehat{B}\)
\(\Leftrightarrow AC=5\cdot\tan30^0\)
hay \(AC=\dfrac{5\sqrt{3}}{3}cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2=\dfrac{100}{3}\)
hay \(BC=\dfrac{10\sqrt{3}}{3}cm\)
Vậy: \(AC=\dfrac{5\sqrt{3}}{3}cm\); \(BC=\dfrac{10\sqrt{3}}{3}cm\)