Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) △ABC△ABC có AD phân giác:
=>BDDC=ABAC=>BDDC=ABAC
△BEQ △BNP△BEQ △BNP
=>BEEN=BQQP=>BEEN=BQQP
△BQM △BAC△BQM △BAC
=>BQQM=ABAC=BDDC=BQQP=BEEN=>BQQM=ABAC=BDDC=BQQP=BEEN
=>BEEN=BDDC=>BEEN=BDDC
Câu b: C/m tương tự DF//AB
dùng tính chất tỉ lệ thức, ....
=>đpcm

a)*Vì \(\Delta MNP\) vuông tại M
\(\Rightarrow MN^2+MP^2=NP^2\)
\(\Rightarrow6^2+8^2=NP^2\)
\(\Rightarrow NP^2=100\)\(\Rightarrow NP=\sqrt{100}=10cm\)
*Xét 2\(\Delta\)vuông HMN và HPM có
\(\widehat{HMN}=\widehat{NPM}\)(cùng phụ \(\widehat{MNP}\))
\(\Rightarrow\Delta HMN\sim\Delta HPM\)

A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
- Sử dụng định lý Thales cho các đường thẳng song song:
- Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\), \(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
- Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\), \(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
- Sử dụng giả thiết \(M D = N E\):
- Ta có \(M N = M D + D E + E N\).
- Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
- Từ đó suy ra \(D E = M N - 2 M D\).
- Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
- Và \(N E = \frac{M N - D E}{2}\).
- Xét tỉ lệ của các đoạn thẳng:
- Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
- Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
- Sử dụng giả thiết \(G I \parallel M N\):
- Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\), \(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
- Liên hệ các đoạn thẳng \(D F\) và \(I P\):
- Chúng ta cần chứng minh \(D F = I P\).
- Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
- Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
- Tính toán \(P G\):
- Ta có \(M G\) là một đoạn thẳng trên \(M P\).
- Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
- Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
- Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
- Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
- Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
- Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
- Kết luận:
- Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
- Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
- Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
- Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
- Vì vậy, \(D F = I P\).
Bài toán đã được chứng minh.ta sẽ chứng minh rằng DF = IP với các điều kiện sau :
-tam giác MNP
-trên cạnh MN, lấy các điểm D và E sao cho MD=NE
-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng
-từ G , kẻ đường thẳng GI // MN , cắt NP tại I