Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề 2 :
MN = 6 cm, MP= 8 cm , NP= 10 cm
ta có : mn^2 + mp^2=6^2+8^2=100
np^2=100
suy ra mp^2+mn^2=np^2
vậy tam giác mnp vuông tại M
kick mk nha
đề 1: vì tổng 3 góc trong 1 tam giác là 180*
mà tam giác abc cân tại a suy ra : góc b = góc c
góc b +góc c=180-80=100
vì góc b = góc c suy ra :
góc b = góc c = 50 *
Trong tam giác MNP: \(MN < NP < MP\).
\(\Rightarrow\) Cạnh MN nhỏ nhất, MP lớn nhất trong tam giác MNP.
Vậy góc nhỏ nhất của tam giác MNP là góc P (đối diện với cạnh MN), góc lớn nhất của tam giác MNP là góc N (đối diện với cạnh MP)
a: Xét ΔMNK và ΔMEK có
MN=ME
góc NMK=góc EMK
MK chung
=>ΔMNK=ΔMEK
b,c: Xét ΔKNF và ΔKEP có
KN=KE
góc KNF=góc KEP
NF=EP
=>ΔKNF=ΔKEP
=>KF=KP
d: ΔKNF=ΔKEP
=>góc NKF=góc EKP
=>góc EKP+góc PKF=180 độ
=>F,K,E thẳng hàng
Trong tam giác MNP ta có: \(MN < MP < NP\) (6 < 7 < 8).
Vậy góc lớn nhất trong tam giác MNP là góc M (đối diện với cạnh NP) và góc nhỏ nhất trong tam giác MNP là góc P (đối diện với cạnh MN).
Ta có:
+ MP2 = 132= 169
+ MN2+NP2= 52+122= 25+144=169
=> MP2 = MN2+NP2 (169=169)
Vậy tam giác MNP vuông tại N (Pytago đảo)
a: Xét ΔMNP có \(NP^2=MP^2+MN^2\)
nên ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
\(\widehat{MND}=\widehat{END}\)
DO đó: ΔNMD=ΔNED
Suy ra: DM=DE
Chứng minh tam giác vuông mà thấy số liệu là mừng chết mất =)))
Xét tam giác MNP có:
\(MN^2=NP^2+MP^2\)
\(10^2=6^2+8^2\)
\(100=36+64\)
Vậy trong tam giác này sử dụng được pytago
=> Tam giác MNP vuông tại P
Hình dễ lắm b. Lúc này hình chưa chứng minh là vuông nhé :)
Bây giờ mới để ý chỗ đề viết sai. Tam giác MNP chứ lấy đâu ra R? :)