K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

a) Xét (O) có 

ΔNDP nội tiếp đường tròn(N,D,P∈(O))

NP là đường kính của (O)(gt)

Do đó: ΔNDP vuông tại D(Định lí)

⇒ND⊥DP tại D

hay ND⊥MP(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được: 

MN2=MD⋅MPMN2=MD⋅MP(đpcm)

b) Vì N,E∈(O) và N,O,E không thẳng hàng

nên NE là dây của (O)

Xét (O) có 

OM là một phần đường kính

NE là dây(cmt)

OM⊥NE tại H(gt)

Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)

a: Xét tứ giác MBHC có

\(\widehat{MBH}+\widehat{MCH}=180^0\)

Do đó: MBHC là tứ giác nội tiếp

b: Sửa đề: \(MC\cdot MP=MB\cdot MN\)

Xét ΔMCP vuông tại C và ΔMBN vuông tại B có

\(\widehat{BMN}\) chung

Do đó: ΔMCP\(\sim\)ΔMBN

Suy ra: MC/MB=MP/MN

hay \(MC\cdot MN=MB\cdot MP\)

15 tháng 2 2022

sao lại đường cao NP bạn ? xem lại đề nhé 

15 tháng 2 2022

cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I