Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có
góc EMN chung
=>ΔMEN đồng dạng với ΔMFP
b: Xét ΔDPH vuông tại D và ΔDMN vuông tại D có
góc DPH=góc DMN
=>ΔDPH đồng dạng với ΔDMN
=>DH/DN=PH/MN
=>DH*MN=PH*DN
tự vẽ hình nha
a) xét tam giác MEN và tam giác MFP có:
\(\widehat{MFP}=\widehat{MEN}\left(=90'\right)\)
\(chung\widehat{NMP}\)
suy ra tam giác MEN đồng dạng với tam giác MFP (g-g)
do tam giác MEN đồng dạng với tam giác MFP
\(\Rightarrow\frac{ME}{MF}=\frac{MN}{MP}\)
lại có \(\widehat{NMP}\) chung
suy ra tam giác MFE đồng dạng với tam giác MPN
\(\Rightarrow\widehat{MEF}=\widehat{MNP}\)
a: Xét ΔMIN vuông tại I và ΔMQP vuông tại Q có
góc M chung
=>ΔMIN đồng dạng với ΔMQP
c: Xét ΔMQI và ΔMPN có
MQ/MP=MI/MN
góc M chung
=>ΔMQI đồng dạng với ΔMPN
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔMEN vuông tại E và ΔMFQ vuông tại F có
\(\widehat{FMQ}\) chung
Do đó: ΔMEN\(\sim\)ΔMFQ
b: Ta có: ΔMEN\(\sim\)ΔMFQ
nên \(\dfrac{ME}{MF}=\dfrac{MN}{MQ}\)
hay \(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)
Xét ΔMEF và ΔMNQ có
\(\dfrac{ME}{MN}=\dfrac{MF}{MQ}\)
\(\widehat{FME}\) chung
Do đó: ΔMEF\(\sim\)ΔMNQ
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: ΔMNP vuông tại M co MH vuông góc NP
nên MH^2=HN*HP
1: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có
\(\widehat{EMN}\) chung
Do đó: ΔMEN~ΔMFP
2: Xét ΔHFN vuông tại F và ΔHEP vuông tại E có
\(\widehat{FHN}=\widehat{EHP}\)(hai góc đối đỉnh)
Do đó: ΔHFN~ΔHEP
3: Ta có; ΔMEN~ΔMFP
=>\(\dfrac{ME}{MF}=\dfrac{MN}{MP}\)
=>\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)
Xét ΔMEF và ΔMNP có
\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)
\(\widehat{EMF}\) chung
Do đó: ΔMEF~ΔMNP
4: Ta có: ΔHFN~ΔHEP
=>\(\dfrac{HF}{HE}=\dfrac{HN}{HP}\)
=>\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)
Xét ΔHFE và ΔHNP có
\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)
\(\widehat{FHE}=\widehat{NHP}\)(hai góc đối đỉnh)
Do đó: ΔHFE~ΔHNP