K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai tam giác vuông DMN và EPN đồng dạng vì có góc nhọn N chung nên  D N M N = E N P N  Hai tam giác DNE và MNP đồng dạng vì có góc N chung và  D N M N = E N P N

23 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có MD = MN.sinN và MD = DP.tgP nên từ đó suy ra D P = M N . sin N t g P

8 tháng 4 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có MD = MPsinP, suy ra

  S M N P = 1 2 . N P . M D = 1 2 . M P . N P . sin P

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

26 tháng 10 2021

b: \(\widehat{NMH}+\widehat{N}=90^0\)

\(\widehat{P}+\widehat{N}=90^0\)

Do đó: \(\widehat{NMH}=\widehat{P}\)

23 tháng 11 2023

a: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot PH=MH^2\left(1\right)\)

Xét ΔNHM vuông tại H có HE là đường cao

nên \(ME\cdot MN=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)

=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)

=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)

c: ΔMHP vuông tại H có HF là đường cao

nên \(MF\cdot MP=MH^2\)

mà \(ME\cdot MN=MH^2\)

nên \(MF\cdot MP=ME\cdot MN\)

=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Xét ΔMFN vuông tại M và ΔMEP vuông tại M có

\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Do đó: ΔMFN đồng dạng với ΔMEP

=>\(\widehat{MNF}=\widehat{MPE}\)