Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N P E F Q
a/ Xét \(\Delta EFM\)và \(\Delta QFP\)có
\(\hept{\begin{cases}EF=QF\\\widehat{EFM}=\widehat{QFP}\\FM=FP\end{cases}}\)
\(\Rightarrow\Delta EFM=\Delta QFP\)
\(\Rightarrow EM=QP\)
Mà \(EM=NE\Rightarrow NE=QP\)
b/ Từ câu a ta có \(\widehat{EMF}=\widehat{QPF}\)
\(\Rightarrow\widehat{EPQ}=\widehat{EPM}+\widehat{FPQ}=\widehat{EPM}+\widehat{EMF}=\widehat{NEP}\left(1\right)\)
Xét \(\Delta NEP\) và \(\Delta QPE\)có
\(\hept{\begin{cases}EP\left(chung\right)\\NE=QP\\\widehat{NEP}=\widehat{QPE}\end{cases}}\)
\(\Rightarrow\Delta NEP=\Delta QPE\)
c/ Từ câu b/ ta suy ra \(\widehat{NPE}=\widehat{PEQ}\)
=>EF // NP
Lại từ câu b ta có
\(NP=EQ=EF+FQ=2EF\)
\(\Rightarrow EF=\frac{1}{2}NP\)
bài này động đến đường trung bình của tam giác
nếu khó hơn thì học sẽ ko cho trc điểm Q và các câu a và b
a: Xét ΔFME và ΔFPQ có
FM=FP
\(\widehat{MFE}=\widehat{PFQ}\)
FE=FQ
Do đó: ΔFME=ΔFPQ
=>ME=PQ
mà ME=NE(E là trung điểm của MN)
nên PQ=EN
b: ΔMFE=ΔPFQ
=>\(\widehat{FME}=\widehat{FPQ}\)
mà hai góc này là hai góc ở vị trí so le trong
nên ME//PQ
mà \(E\in MN\)
nên NE//PQ
Xét ΔNEP và ΔQPE có
NE=QP
\(\widehat{NEP}=\widehat{QPE}\)(hai góc so le trong, NE//PQ)
EP chung
Do đó: ΔNEP=ΔQPE
c: ΔNEP=ΔQPE
=>QE=NP
mà \(EF=\dfrac{1}{2}QE\)
nên EF=1/2NP
ΔNEP=ΔQPE
=>\(\widehat{NPE}=\widehat{QEP}\)
mà hai góc này là hai góc ở vị trí so le trong
nên QE//NP
=>EF//NP
a/ Xét tam giác BEM và tam giác CFM có:
Góc B=C(Tam giác ABC cân tại A)
Góc BEM=CFM(Tam giác ABC cân tại A)
BM=MC(Trung tuyến AM)
=> Tam giác BEM=tam giác CFM(ch-gn)
b/Gọi giao điểm của EF và AM là O.
Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.
=> Góc AMB=AMC=90 độ.
Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)
=> Góc EMO=FMO.
Xét tam giác EMO và tam giác FMO có:
EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)
Góc EMO=FMO(cmt)
MO chung
=> Tam giác EMO=tam giác FMO(c-g-c)
=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ
EO=OF(cạnh tương ứng)
=> AM là đường trung trực của EF.
c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)
Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:
AC2=AM2+MC2=42+MC2=52=25
=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm
Mà BM=MC(Trung tuyến AM)
=> BC=3+3=6cm
a) Xét \(\Delta MPH\)và \(\Delta ENH\)có:
HP = HN (H là trung điểm của NP)
\(\widehat{MHP}=\widehat{EHN}\)(2 góc đối đỉnh)
MH = HE (gt)
\(\Rightarrow\Delta MPH=\Delta ENH\left(c.g.c\right)\)
\(\Rightarrow MP=NE\)(2 cạnh tương ứng)
\(\widehat{PMH}=\widehat{NEH}\)(2 góc đối đỉnh)
Mà 2 góc này ở vị trí so le trong
=> MP // NE
b) Xét \(\Delta AMH\)và \(\Delta BEH\)có:
MH = HE (gt)
\(\widehat{AMH}=\widehat{BEH}\)(cm a)
MA = BE (gt)
\(\Rightarrow\Delta AMH=\Delta BEH\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHM}=\widehat{BHE}\)(2 góc tương ứng)
Mà \(\widehat{BHE}+\widehat{BHM}=\widehat{MHE}=180^o\)
\(\Rightarrow\widehat{AHM}+\widehat{BHM}=\widehat{AHB}=180^o\)
=> 3 điểm A,H,B thẳng hàng
c) Xét \(\Delta NEH\)có:
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
\(\Rightarrow\widehat{NHE}+50^0+25^o=180^o\)
\(\Rightarrow\widehat{NHE}+75^o=180^o\)
\(\Rightarrow\widehat{NHE}=105^o\)
Vì góc NHE là góc ngoài của tam giác EKH
=> góc NHE = góc KEH + góc EKH
=> 105o = góc KEH + 90o
=> góc KEH = 15o
\(\widehat{NHE}+\widehat{HNE}+\widehat{HEN}=180^o\)
N M P E F Q
a)
Ta có hình vẽ:
M N P E F Q
a/ Xét tam giác MEF và tam giác PQF có:
MF = EP (GT)
\(\widehat{MFE}\)=\(\widehat{PFQ}\) (đối đỉnh)
EF = FQ (GT)
=> tam giác MEF= tam giác PQF (c.g.c)
=> ME = QP (2 cạnh tương ứng)
Ta có: \(\begin{cases}ME=QP\\ME=NE\end{cases}\)\(\Rightarrow\)NE = PQ (đpcm)
b/ Ta có: \(\widehat{EMF}\)=\(\widehat{FPQ}\) (tam giác MEF = tam giác FQP)
Mà 2 góc này đang ở vị trí so le trong
=> ME // QP
Ta có: ME trùng NE, mà ME // PQ
=> NE // PQ => \(\widehat{NEP}\)=\(\widehat{EPQ}\) (so le trong) (1)
Ta có: NE = PQ (câu a) (2)
EP: cạnh chung (3)
Từ (1),(2),(3) => tam giác NEP = tam giác QPE (c.g.c)
c/ Ta có: tam giác NEP = tam giác QPE (câu b)
=> EQ = NP
Mà EF = FQ ( theo giả thiết)
=> EF = FQ = \(\frac{1}{2}\)EQ=\(\frac{1}{2}\)NP
Vậy EF = \(\frac{1}{2}\) NP (đpcm)
Do tam giác NEP = tam giác QPE (câu b)
=> \(\widehat{QEP}\)=\(\widehat{EPN}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> EQ // NP hay EF // NP (vì E,F,Q cùng nằm trên 1 đường thẳng) (đpcm)