Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMN và ΔAPE có
AN=AE
MN=PE
AM=AP
=>ΔAMN=ΔAPE
b: ΔAMN=ΔAPE
=>góc NMA=góc EAP
=>góc NMA=góc AMP
=>MA là phân giác của góc NMP
b: Xét ΔMND và ΔMPD có
MN=MP
ND=PD
MD chung
Do đó: ΔMND=ΔMPD
a: Xét ΔMNK và ΔMEK có
MN=ME
góc NMK=góc EMK
MK chung
=>ΔMNK=ΔMEK
b,c: Xét ΔKNF và ΔKEP có
KN=KE
góc KNF=góc KEP
NF=EP
=>ΔKNF=ΔKEP
=>KF=KP
d: ΔKNF=ΔKEP
=>góc NKF=góc EKP
=>góc EKP+góc PKF=180 độ
=>F,K,E thẳng hàng
a) Xét tam giác MNP có: MN = MP (gt).
=> Tam giác MNP cân tại M.
=> Góc N = Góc P (Tính chất tam giác cân).
b) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là phân giác của góc NMP (Tính chất các đường trong tam giác).
c) Xét tam giác MNP cân tại M:
MI là trung tuyến (I là trung điểm của cạnh NP).
=> MI là đường cao (Tính chất các đường trong tam giác).
=> MI vuông góc với NP (đpcm).