Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì PQ là phân giác góc P trong ΔMNP
=> \(\frac{PM}{PN}\)= \(\frac{QM}{QN}\)
<=> \(\frac{6}{8}\)= \(\frac{QM}{QN}\)
<=> \(\frac{QN}{8}\)= \(\frac{QM}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{QN}{8}\)= \(\frac{QM}{6}\)= \(\frac{QN+QM}{6+8}\)= \(\frac{MN}{14}\)= \(\frac{10}{14}\)= \(\frac{5}{7}\)
=> QM = \(\frac{5}{7}\) . 6 = \(\frac{30}{7}\) (cm)
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
Xét ΔPMN có PH là phân giác
nên MH/MP=NH/NP
=>NH/6=2/4=1/2
hay NH=3(cm)