Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có
góc N chung
DO đó: ΔMNP∼ΔHNM
Suy ra: NM/NH=NP/NM
hay \(NM^2=NH\cdot NP\)
b: NP=13cm
\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
MK là phân giác góc ngoài
=>KN/KP=MN/MP
=>KN/KN+8=9/15=3/5
=>5KN=3KN+24
=>KN=12cm
Vì PQ là phân giác góc P trong ΔMNP
=> \(\frac{PM}{PN}\)= \(\frac{QM}{QN}\)
<=> \(\frac{6}{8}\)= \(\frac{QM}{QN}\)
<=> \(\frac{QN}{8}\)= \(\frac{QM}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{QN}{8}\)= \(\frac{QM}{6}\)= \(\frac{QN+QM}{6+8}\)= \(\frac{MN}{14}\)= \(\frac{10}{14}\)= \(\frac{5}{7}\)
=> QM = \(\frac{5}{7}\) . 6 = \(\frac{30}{7}\) (cm)
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
Xét tam giác MNP có NQ là tia phân giác ^MNP nên
\(\frac{NM}{NP}=\frac{MQ}{QP}\)mà \(MQ=MP-QP=5-QP\)(1)
hay \(\frac{8}{12}=\frac{5-QP}{QP}\Rightarrow8QP=60-12QP\)
\(\Leftrightarrow20QP=60\Leftrightarrow QP=3\)cm
suy ra (1) \(MQ=5-3=2\)cm
Vậy QP = 3 cm ; MQ = 2cm
Ta có NQ là ta phân giác
\(\Rightarrow\)MQ=PQ mà MQ+PQ=MP =10 cm
\(\Rightarrow\)MQ=PQ=10:2=5(CM)
Vậy ...........