Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giácNMD và tam giác PQD có : MD = DQ (gt)
góc MDN = góc QDP (đối đỉnh)
ND = DP do D là trung điểm của PN (gt)
=> tam giác NMD = tam giác PQD (c-g-c)
=> MN = PQ (đn)
b, tam giác NMD = tam giác PQD (câu a)
=> góc MND = góc DPQ (đn) mà 2 góc này slt
=> MN // PQ (tc)
a,b) Xét tam giác MNP có
MN=MP
Suy ra MNP cân => MD là đg trung trực (tc)
=> MD NP
Xét tứ giác MPQN có
D là tđ MQ
D là tđ NP
MD NP
Suy ra MPQN là hình thoi
=> MN=PQ ; MN || PQ
c) Ta có
MN || PQ => MN || PE ( P thuộc EQ)
ME || NP (gt)
Suy ra MEPN là hình bình hành
=> MN= EP (tc)
Mà MN=PQ (cmt) => PE=PQ => P là trung điểm QE (đpcm)
Đ/S:......
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
b: Xét ΔMND và ΔMPD có
MN=MP
ND=PD
MD chung
Do đó: ΔMND=ΔMPD
a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)
nên NQ=4(cm)
b: Xét ΔQMP và ΔQND có
QM=QN
\(\widehat{MQP}=\widehat{NQD}\)
QP=QD
Do đó; ΔQMP=ΔQND
Suy ra: MP=ND
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )
a) Xét \(\Delta\)MND và \(\Delta\)QPD có
ND=DP(do D là trung điểm của NP)
\(\widehat{MDN}=\widehat{PDQ}\)(hai góc đối đỉnh)
MD=QD(gt)
Do đó: \(\Delta\)MND=\(\Delta\)QPD(c-g-c)
\(\Rightarrow\)MN=QD(hai cạnh tương ứng)
b) Ta có: \(\Delta\)MND=\(\Delta\)QPD(cmt)
\(\Rightarrow\)\(\widehat{MND}=\widehat{QPD}\)(hai góc tương ứng)
mà \(\widehat{MND}\) và \(\widehat{QPD}\) là hai góc ở vị trí so le trong
nên MN//QP(dấu hiệu nhận biết hai đường thẳng song song)