K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Bạn tự vẽ hình và làm câu a, b nhé. Mình chỉ giúp câu c thôi!!!

c) Vì Mx // NP (gt)

\(\widehat{QMP}=\widehat{MPN}\) (vị trí so le trong)

*Xét ΔMPN và ΔPMQ có:

\(\left\{{}\begin{matrix}NP=MQ\left(gt\right)\\\widehat{MPN}=\widehat{QMP}\left(cmt\right)\\MP.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔMPN = ΔPMQ (c - g - c)

\(\widehat{NMP}=\widehat{MPQ}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong

⇒ MN // PQ

*Ta có: \(\left\{{}\begin{matrix}MN//KP\left(cmt\right)\\MN//PQ\left(cmt\right)\end{matrix}\right.\)

⇒ K, P, Q thẳng hàng (Tiên đề Ơ-clit)

a: Xét ΔMIP và ΔKIN có 

IM=IK

\(\widehat{MIP}=\widehat{KIN}\)

IP=IN

Do đó: ΔMIP=ΔKIN

c: Xét ΔMEK có 

H là trung điểm của ME

I là trung điểm của MK

Do đó: HI là đường trung bình

=>HI//EK và HI=EK/2

Xét ΔMPE có

PH là đường cao

PH là đường trung tuyến

Do đó: ΔMPE cân tại P

Suy ra: PM=PE(1)

Xét tứ giác MNKP có

I là trung điểm của MK

I là trung điểm của NP

Do đó: MNKP là hình bình hành

Suy ra: NK=MP(2)

Từ (1) và (2) suy ra NK=PE

13 tháng 2 2020

Câu a) hơi lỗi

13 tháng 2 2020

Ui sorry nha, hơi bị lỗi type xíu.

Câu a đúng ra phải là :Chứng minh tam giác MNI = tam giác MPI

a) Xét ΔMNI và ΔMPI có

MN=MP(do ΔMNP cân tại M)

NI=PI(do I là trung điểm của NP)

MI là cạnh chung

Do đó: ΔMNI=ΔMPI(c-c-c)

b)Ta có: MI=IH(gt)

mà I∈MH

nên I là trung điểm của MH

Xét tứ giác MNHP có

I là trung điểm của đường chéo MH(cmt)

I là trung điểm của đường chéo NP(gt)

Do đó: MNHP là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒MN//HP(hai cạnh đối trong hình bình hành MNHP)

c) Xét tứ giác MKPN có

MK//NP(Mx//NP,K∈Mx)

MK=NP(gt)

Do đó: MKPN là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒MN//PK(hai cạnh đối trong hình bình hành MKPN)

Ta có: HP//NM(cmt)

PK//MN(cmt)

mà HP và PK có điểm chung là P

nên H,P,K thẳng hàng(đpcm)

26 tháng 4 2020

Sai đề rùi bạn ui :v

Câu b tại s MN // NP à ? ( đề đúng cs pk là MN // PH ?)

Câu c Tại s K ; P ; M thẳng hàng ak ? Mong bạn xemm lại đề hộ mình :D

26 tháng 4 2020

Violympic toán 7

a) Xét △MNP có:

MN = MP

⇒ △MNP cân tại M

\(\widehat{MNP}=\widehat{MPN}\)

Xét △MNI và △MPI có:

MN = MP (g.t)

\(\widehat{MNP}=\widehat{MPN}\) (c.m trên)

NI = PI (g.t)

⇒ △MNI = △MPI (đpcm)

b) Xét △MNI và △HPI có:

NI = PI (g.t)

\(\widehat{MIN}=\widehat{HIP}\) (đối đỉnh)

IM = IH (g.t)

⇒ △MNI = △HPI (c.g.c)

\(\widehat{MNI}=\widehat{HPI}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // HP (đpcm)

c) Xét △MNP và △PKM có:

MP : cạnh chung

\(\widehat{MPN}=\widehat{PMK}\) (Mx // NP)

MK = NP (g.t)

⇒ △MNP = △PKM (c.g.c)

\(\widehat{NMP}=\widehat{KPM}\) (Hai góc tương ứng)

Mà hai góc này nằm ở vị trí so le trong.

⇒ MN // PK

Mà MN // HP (c.m b)

⇒ Ba điểm K, P, H thẳng hàng (đpcm)

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng