K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMPN có \(MN^2+MP^2=NP^2\)

nên ΔMNP vuông tại M

Xét ΔMNP có ND là phân giác

nên \(\dfrac{DM}{PD}=\dfrac{NM}{NP}=\dfrac{3}{5}\)

b: Xét ΔMND vuông tại M và ΔHND vuông tại H có

\(\widehat{MND}=\widehat{HND}\)

Do đó: ΔMND~ΔHND

 Xét ΔPHD vuông tại H và ΔPMN vuông tại M có

\(\widehat{HPD}\) chung

Do đó; ΔPHD~ΔPMN

c: ΔPHD~ΔPMN

=>\(\dfrac{HD}{MN}=\dfrac{PD}{PN}\)

=>\(DH\cdot NP=MN\cdot PD\)

8 tháng 4 2021

a) Xét ΔMNP và ΔHMP có:

Góc MPN chung

Góc  NMP = góc MHP (= \(90^o\))

⇒ ΔMNP ~ ΔHMP (g.g)

b) Áp dụng định lí Pytago vào Δ vuông MNP:

\(MP^2=NP^2-MN^2\)

\(MP^2=10^2-6^2\)

\(MP^2=64\)

⇒ MP = 8

Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\) 

hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)

22 tháng 3 2022

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!

a) △MNP vuông tại M \(\Rightarrow MN^2+MP^2=NP^2\Rightarrow NP^2=\sqrt{MN^2+MP^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△MNP có: ND phân giác.\(\Rightarrow\dfrac{DM}{DP}=\dfrac{NM}{NP}\)

\(\Rightarrow\dfrac{DM}{NM}=\dfrac{DP}{NP}=\dfrac{DM+DP}{NM+NP}=\dfrac{MP}{NM+NP}\)

\(\Rightarrow DM=\dfrac{MP.NM}{NM+NP}=\dfrac{4.3}{3+5}=1,5\left(cm\right)\)

\(\Rightarrow DP=\dfrac{MP.NP}{NM+NP}=\dfrac{4.5}{3+5}=2,5\left(cm\right)\)

b) △MNH∼△PNM (g-g) \(\Rightarrow\dfrac{MN}{PN}=\dfrac{NH}{NM}\)

△MNH có: NK phân giác \(\Rightarrow\dfrac{NH}{NM}=\dfrac{KH}{KM}=\dfrac{MN}{PN}=\dfrac{DM}{DP}\)

c) △MND∼HNK (g-g) \(\Rightarrow\widehat{MDN}=\widehat{HKN}=\widehat{MKD}\)\(\dfrac{NM}{NH}=\dfrac{ND}{NK}\Rightarrow NH.ND=NM.NK\)

\(\Rightarrow\)△MDK cân tại M

 

10 tháng 1 2022

a, xét tam giá HNM và tam giác MNP có chung :

góc MNP

cạnh MN 

cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP 

=> tam giác HNM đồng dạng MNP (c-g-c)

b,

áp dụng đ/l pytago vào tam giác vuông MNP :

=>NP=15cm 

MH.NP =NM.MP

MH.15=9.12

=>MH=7,2cm

áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):

=>NH=5,4cm

HP=NP-NH

HP=15-5,4=9,6cm

c, 

vì MI là phân giác của góc M 

=> MI là trung tuyến của tam giác MNP nên:

NI=IP 

mà NI+IP=15cm

=> NI=IP =7,5cm

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xet ΔABC vuông tại A và ΔMNP vuông tại M co

AB/MN=AC/MP

=>ΔABC đồng dạng vơi ΔMNP

b: ΔABC đồng dạng vơi ΔMNP

=>goc A=góc M; góc B=góc N; gócC=góc P