Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{P}=45^{\text{o}}\Rightarrow\Delta MNP\)vuông cân tại M
=> MN = MP
mà MN2 + MP2 = NP2
=> 2MP2 = NP2
=> MP2 = NP2 : 2 = 100:2 = 50
=> MP = \(\sqrt{50}\)
=> \(S_{MNP}=\frac{MN.MP}{2}=\frac{\sqrt{50}.\sqrt{50}}{2}=\frac{50}{2}=25\)
\(\sin45^0=\frac{MP}{NP}\Rightarrow\frac{\sqrt{2}}{2}=\frac{MP}{10}\Rightarrow MP=\frac{10\sqrt{2}}{2}\)
\(\tan45^0=\frac{MP}{MN}\Rightarrow1=\frac{10\sqrt{2}}{2}.\frac{1}{MN}\Rightarrow\frac{1}{MN}=\frac{2}{10\sqrt{2}}\Rightarrow MN=\frac{10\sqrt{2}}{2}\)
\(S_{MNP}=\frac{1}{2}.MN.MP=\frac{1}{2}.\frac{10\sqrt{2}}{2}.\frac{10\sqrt{2}}{2}=\frac{200}{8}=\frac{50}{2}\)( đvdt )
a, Vì \(NP^2=46,24=10,24+36=MN^2+MP^2\) nên tg MNP vuông tại M
b, Áp dụng HTL: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{128}{85}\left(cm\right)\\KP=\dfrac{MP^2}{NP}=\dfrac{90}{17}\left(cm\right)\\MK=\sqrt{KN\cdot NP}=\dfrac{48}{17}\left(cm\right)\end{matrix}\right.\)
c, \(S_{MNP}=\dfrac{1}{2}MN\cdot MP=\dfrac{1}{2}\cdot6\cdot3,2=9,6\left(cm^2\right)\)
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
a)Ta có:`MN^2+MP^2=a^2+a^2=2a^2`
`NP^2=2a^2`
`=>MN^2+MP^2=NP^2`
`=>` tam giác MNP vuông cân
b)Xét tam giác vuông cân MNP có:
`MO` là trung tuyến
`=>MO` là đg cao
`=>MO bot NP`
`=>hat{MON}=90^o`
Vì `O` là trung đ NP
`=>NO=OP=(NP)/2=(asqrt2)/2`
`sin\hat{NMO}=(NO)/(MN)=(asqrt2/2)/a=sqrt2/2`
Tương tự với các cái còn lại.
a, do MN=MP=a=>\(\Delta MNP\) cân tại M
b, \(\Delta MNP\) cân tại M có MO là trung tuyến nên đồng thời là đường cao
\(=>MO\perp NP\)=>\(\Delta NOM\) vuông tại O
có: \(NO=\dfrac{NP}{2}=\dfrac{a\sqrt{2}}{2}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\sin\left(NMO\right)=\dfrac{NO}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
theo pytago\(=>OM=\sqrt{MN^2-ON^2}=\sqrt{a^2-\left(\dfrac{a}{\sqrt{2}}\right)^2}\)
\(=\sqrt{a^2-\dfrac{a^2}{2}}=\sqrt{\dfrac{a^2}{2}}=\dfrac{a}{\sqrt{2}}cm\)
\(=>\cos\angle\left(NMO\right)=\dfrac{OM}{NM}=\dfrac{\dfrac{a}{\sqrt{2}}}{a}=\dfrac{\sqrt{2}}{2}\)
\(=>\tan\angle\left(NMO\right)=\dfrac{ON}{OM}=\dfrac{\dfrac{a}{\sqrt{2}}}{\dfrac{a}{\sqrt{2}}}=1\)
tương tự \(=>\cot\angle\left(NMO\right)=1\)