Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=36^2+48^2=3600\)
hay NP=60(cm)
Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)
nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)
mà NK+KP=NP=60cm(K nằm giữa N và P)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)
Do đó:
\(\dfrac{NK}{36}=\dfrac{5}{7}\)
hay \(NK=\dfrac{180}{7}cm\)
Vậy: \(NK=\dfrac{180}{7}cm\)

- Sử dụng định lý Thales cho các đường thẳng song song:
- Vì \(D F\) song song với \(N P\) (\(D F \parallel N P\)) và \(F\) thuộc \(M P\), \(D\) thuộc \(M N\), ta có tam giác \(M D F\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M D}{M N} = \frac{M F}{M P} = \frac{D F}{N P}\)
- Tương tự, vì \(E G\) song song với \(N P\) (\(E G \parallel N P\)) và \(G\) thuộc \(M P\), \(E\) thuộc \(M N\), ta có tam giác \(M E G\) đồng dạng với tam giác \(M N P\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{M E}{M N} = \frac{M G}{M P} = \frac{E G}{N P}\)
- Sử dụng giả thiết \(M D = N E\):
- Ta có \(M N = M D + D E + E N\).
- Thay \(N E = M D\) vào, ta có \(M N = M D + D E + M D = 2 M D + D E\).
- Từ đó suy ra \(D E = M N - 2 M D\).
- Cũng từ \(M N = 2 M D + D E\), ta có \(M D = \frac{M N - D E}{2}\).
- Và \(N E = \frac{M N - D E}{2}\).
- Xét tỉ lệ của các đoạn thẳng:
- Từ \(\frac{M D}{M N} = \frac{D F}{N P}\), ta có \(D F = N P \cdot \frac{M D}{M N}\).
- Từ \(\frac{M E}{M N} = \frac{E G}{N P}\), ta có \(E G = N P \cdot \frac{M E}{M N}\).
- Sử dụng giả thiết \(G I \parallel M N\):
- Vì \(G I \parallel M N\) và \(I\) thuộc \(N P\), \(G\) thuộc \(M P\), ta có tam giác \(P G I\) đồng dạng với tam giác \(P N M\).
- Từ đó, theo định lý Thales, ta có tỉ lệ:\(\frac{P G}{P M} = \frac{P I}{P N} = \frac{G I}{M N}\)
- Liên hệ các đoạn thẳng \(D F\) và \(I P\):
- Chúng ta cần chứng minh \(D F = I P\).
- Từ \(D F = N P \cdot \frac{M D}{M N}\), ta cần chứng minh \(I P = N P \cdot \frac{M D}{M N}\).
- Điều này có nghĩa là ta cần chứng minh \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Chúng ta biết \(\frac{P I}{P N} = \frac{P G}{P M}\). Vậy ta cần chứng minh \(\frac{P G}{P M} = \frac{M D}{M N}\).
- Tính toán \(P G\):
- Ta có \(M G\) là một đoạn thẳng trên \(M P\).
- Ta có \(M P = M F + F G + G P\) hoặc \(M P = M G + G P\).
- Từ \(\frac{M E}{M N} = \frac{M G}{M P}\), ta có \(M G = M P \cdot \frac{M E}{M N}\).
- Do đó, \(P G = M P - M G = M P - M P \cdot \frac{M E}{M N} = M P \left(\right. 1 - \frac{M E}{M N} \left.\right) = M P \cdot \frac{M N - M E}{M N}\).
- Vì \(M N - M E = M D\), nên \(P G = M P \cdot \frac{M D}{M N}\).
- Kiểm tra tỉ lệ \(\frac{P G}{P M}\):
- Thay biểu thức của \(P G\) vào tỉ lệ \(\frac{P G}{P M}\):\(\frac{P G}{P M} = \frac{M P \cdot \frac{M D}{M N}}{M P} = \frac{M D}{M N}\)
- Kết luận:
- Ta có \(\frac{P I}{P N} = \frac{P G}{P M}\) (từ bước 4).
- Ta vừa chứng minh được \(\frac{P G}{P M} = \frac{M D}{M N}\) (từ bước 7).
- Do đó, \(\frac{P I}{P N} = \frac{M D}{M N}\).
- Nhân cả hai vế với \(N P\), ta được \(P I = N P \cdot \frac{M D}{M N}\).
- Mà ta đã có \(D F = N P \cdot \frac{M D}{M N}\) (từ bước 1).
- Vì vậy, \(D F = I P\).
ta sẽ chứng minh rằng DF = IP với các điều kiện sau :
-tam giác MNP
-trên cạnh MN, lấy các điểm D và E sao cho MD=NE
-qua D và E , vẽ các đường thẳng song song với NP ,cắt MP tại F và M tương ứng
-từ G , kẻ đường thẳng GI // MN , cắt NP tại I
a) Xét ΔMNP có MD là đường phân giác ứng với cạnh NP(gt)
nên \(\frac{ND}{NM}=\frac{DP}{PM}\)
\(\Leftrightarrow\frac{ND}{8}=\frac{7.5}{10}\)
hay \(ND=\frac{7.5\cdot8}{10}=\frac{60}{10}=6cm\)
Vậy: ND=6cm
b) Xét ΔMNP có DC//MP(gt)
nên \(\frac{NC}{CM}=\frac{ND}{DP}\)
\(\Leftrightarrow\frac{NC}{CM}=\frac{6}{7.5}\)
hay \(\frac{NC}{6}=\frac{CM}{7.5}\)
Ta có: NC+CM=MN=8cm(C nằm giữa N và M)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{NC}{6}=\frac{CM}{7.5}=\frac{NC+CM}{6+7.5}=\frac{NM}{13.5}=\frac{8}{13.5}=\frac{16}{27}\)
Do đó: \(\frac{NC}{6}=\frac{16}{27}\)
\(\Leftrightarrow NC=\frac{16\cdot6}{27}=\frac{96}{27}=\frac{32}{9}\simeq3.55cm\)
Vậy: NC\(\simeq\)3,55cm