Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一
a) Ta có: ΔMNP vuông tại N(gt)
nên \(\widehat{NPM}+\widehat{NMP}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow90^0=30^0+\widehat{NMK}\)
hay \(\widehat{NMK}=60^0\)
Xét ΔMHN vuông tại H và ΔKHN vuông tại H có
MH=KH(gt)
NH chung
Do đó: ΔMHN=ΔKHN(hai cạnh góc vuông)
Suy ra: NM=NK(hai cạnh tương ứng)
Xét ΔNMK có NM=NK(cmt)
nên ΔNMK cân tại N(Định nghĩa tam giác cân)
Xét ΔNMK cân tại N có \(\widehat{NMK}=60^0\)(cmt)
nên ΔNMK đều(Dấu hiệu nhận biết tam giác đều)
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H
M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)