Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
a) 180-(70+55)=55
vậy taM GIÁC MNP LÀ TAM GIÁC CÂN
B) GÓC N=GÓC P (55=55) => MN=MP
GÓC M> GÓC N ,GÓC P(70>55,55) =>NP>MP ,MN
Ta có ∠C = 180o - 60o - 30o = 90o
Vì ∠C > ∠A > ∠B ⇒ AB > BC > AC. Chọn C
a)
Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.
Vậy DE < DG.
b)
Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ - 56^\circ - 65^\circ = 59^\circ \).
Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNP là NP (đối diện với góc M), cạnh lớn nhất của tam giác MNP là MP (đối diện với góc N).
b. Khi ∠B = 30o thì ∠C = 180o - 30o - 80o = 70o ( 1 điểm )
Vì ∠B < ∠C < ∠A ⇒ AC < AB < BC ( 1 điểm )
Ta có:
\(\widehat{M}=30^o< \widehat{N}=50^o< \widehat{P}=100^o\) (gt)
\(\Rightarrow NP< MP< MN\) (định lý)
Vậy...
Phần định lý kia nếu muốn đầy đủ thì bạn ghi là "quan hệ giữa góc và cạnh đối diện" nhé