Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Mathbn vào Link này xem thử nhé :
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google
Hok tốt
# EllyNguyen #
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{MAN}=\widehat{BAC}\)
Do đó: ΔAMN đồng dạng với ΔABC
=>\(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
NC=NA+AC
MB=MA+AB
mà NA=MA và AC=AB
nên NC=MB
Hình thang MNBC có MB=NC
nên MNBC là hình thang cân
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Vì ∆MNP cân tại M
=> MN = MP , MNP = MPN
=> MNP = \(\frac{180°-NMP}{2}\)
Vì MQ = MK
=> ∆MQK cân tại M
=> MQ = MK , MKQ = MQK
=> QKM = \(\frac{180°-QMK}{2}\)
Mà QMK = NMP ( đối đỉnh)
=> QKM = MNP
Mà 2 góc này ở vị trí so le trong
=> QK//NP
=> QKPN là hình thang (1)
Ta có :
QM + MP = QP
KM + MN = KN
Mà QM = MK , MN = MP
=> OP = KN (2)
=> QKPN là hình thang cân