K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân

 

 

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

a: Xét ΔMAE và ΔMBE có 

MA=MB

\(\widehat{AME}=\widehat{BME}\)

ME chung

Do đó: ΔMAE=ΔMBE

b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có

ME chung

\(\widehat{HME}=\widehat{KME}\)

Do đó:ΔMHE=ΔMKE

Suy ra: EH=EK

c: Ta có: ΔMAB cân tại M

mà ME là đường trung tuyến

nên ME là đường cao

=>ΔEBI vuông tại E

28 tháng 2 2022

em cảm ơn ạ

9 tháng 1 2019

Hình tự vẽ 

a,\(\Delta AMB\)và \(\Delta DMC\)có:

AM = DM (gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

MB = MC (gt)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\)(2 góc tương ứng)

\(\Rightarrow AB//CD\)(  vì có cặp góc so le trong bằng nhau )

b,hơi sai sai bn ơi 

3 tháng 3 2021

Violympic toán 7

28 tháng 3 2021

â mây zing gút chọp

23 tháng 4 2020

M N D A B I

hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi

a, tam giác MND cân tại M (gt) 

=> ^MND = ^MDN (tc)

^MND + ^MNB = 180 (kb)

^MDN + ^MDA = 180 (kb)

=> ^MNB = ^MDA 

xét tam giác MNB và tam giác MDA có BN = DA (gt)

MN = MD do tam giác MND cân tại M (gt)

=> tg MNB = tg MDA (c-g-c)

=> MA = MB  (đn)

=> tg MAB cân tại M (Đn)

b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)

^AHD = ^BKN = 90

^A = ^B do tam giác MAB cân tại M (câu a)

=> tg DHA = tg NKB (ch-gn)

=> DH = KN (đn)

c, tg DHA = tg NKB (câu b)

=> AH = KB (đn)

có MA = MB (câu a)

AH + MH = AM 

MK + KB = BM

=> MH = MK

d, có ^HDA  = ^KNB do tg DHA = tg NKB (Câu b)

^HDA = ^NDI (đối đỉnh)

^KNB = ^DNI (đối đỉnh)

=> ^NDI = ^DNI 

=> tam giác DNI cân tại I 

27 tháng 4 2022

M N P B A H I

a/

Xét tg MAH và tg BAN có

AM=AB (gt); AN=AH (gt)

\(\widehat{MAH}=\widehat{BAN}\) (góc đối đỉnh)

=> tg MAH = tg BAN (c.g.c)

b/

Ta có tg MAH = tg BAN (cmt) mà \(\Rightarrow\widehat{BNA=}\widehat{MHA}=90^o\)

Xét tg vuông BAN có AB>BN (trong tg vuông cạnh huyền là cạnh có số đo lớn nhất)

Mà AB=AM

=> AM>BN (1)

Xét tg vuông MAH có \(\widehat{MAH}\) là góc nhọn => \(\widehat{MAN}\) là góc tù

Xét tg MAN có MN>AM (trong tg cạnh đối diện với góc tù là cạnh có số đo lớn nhất) (2)

Từ (1) và (2) => MN>BN

Ta có tg MAH = tg BAN (cmt) => \(\widehat{NBM}=\widehat{AMH}\) (3)

Xét tg BMN có

MN>BN (cmt) => \(\widehat{NBM}>\widehat{NMA}\) (trong tg góc đối diện với cạnh có số đo lớn hơn thì lớn hơn góc đối diện với cạnh có số đo nhỏ hơn) (4)

Từ (3) và (4) => \(\widehat{AMH}>\widehat{NMA}\)

c/

Ta có \(\widehat{BNA}=90^o\left(cmt\right)\Rightarrow BN\perp NP\) (1)

Xét tg MNP có \(MH\perp NP\left(gt\right)\) => MH là đường cao

=> MH là đường trung tuyến của tg MNP (trong tg cân đường cao hạ từ đỉnh đồng thời là đường trung tuyến) => HN=HP

Mà IB=IP (gt)

=> IH là đường trung bình của tg BNP => IH//BN (2)

Từ (1) và (2) => \(IH\perp NP\) mà \(MH\perp NP\)

=> M; H; I thảng hàng (từ 1 điểm trên đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)

Xét tg INP có

\(IH\perp NP\) => IH là đường cao của tg INP

HN=HP (cmt) => IH là đường trung tuyến của tg INP

=> tg INP là tg cân tại I (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => IN=IP (cạn bên tg cân)

Mà IP=IB (gt) và IP+IB=BP

=> IN=1/2BP