Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg MAH và tg BAN có
AM=AB (gt); AN=AH (gt)
\(\widehat{MAH}=\widehat{BAN}\) (góc đối đỉnh)
=> tg MAH = tg BAN (c.g.c)
b/
Ta có tg MAH = tg BAN (cmt) mà \(\Rightarrow\widehat{BNA=}\widehat{MHA}=90^o\)
Xét tg vuông BAN có AB>BN (trong tg vuông cạnh huyền là cạnh có số đo lớn nhất)
Mà AB=AM
=> AM>BN (1)
Xét tg vuông MAH có \(\widehat{MAH}\) là góc nhọn => \(\widehat{MAN}\) là góc tù
Xét tg MAN có MN>AM (trong tg cạnh đối diện với góc tù là cạnh có số đo lớn nhất) (2)
Từ (1) và (2) => MN>BN
Ta có tg MAH = tg BAN (cmt) => \(\widehat{NBM}=\widehat{AMH}\) (3)
Xét tg BMN có
MN>BN (cmt) => \(\widehat{NBM}>\widehat{NMA}\) (trong tg góc đối diện với cạnh có số đo lớn hơn thì lớn hơn góc đối diện với cạnh có số đo nhỏ hơn) (4)
Từ (3) và (4) => \(\widehat{AMH}>\widehat{NMA}\)
c/
Ta có \(\widehat{BNA}=90^o\left(cmt\right)\Rightarrow BN\perp NP\) (1)
Xét tg MNP có \(MH\perp NP\left(gt\right)\) => MH là đường cao
=> MH là đường trung tuyến của tg MNP (trong tg cân đường cao hạ từ đỉnh đồng thời là đường trung tuyến) => HN=HP
Mà IB=IP (gt)
=> IH là đường trung bình của tg BNP => IH//BN (2)
Từ (1) và (2) => \(IH\perp NP\) mà \(MH\perp NP\)
=> M; H; I thảng hàng (từ 1 điểm trên đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)
Xét tg INP có
\(IH\perp NP\) => IH là đường cao của tg INP
HN=HP (cmt) => IH là đường trung tuyến của tg INP
=> tg INP là tg cân tại I (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => IN=IP (cạn bên tg cân)
Mà IP=IB (gt) và IP+IB=BP
=> IN=1/2BP
1: Xét ΔNMI và ΔNEI co
NM=NE
góc MNI=góc ENI
NI chung
=>ΔNMI=ΔNEI
=>IM=IE
=>ΔIME cân tại I
2: góc KME+góc NEM=90 độ
góc PME+góc NME=90 độ
mà góc NEM=góc NME
nên góc KME=góc PME
=>ME là phân giác của góc KMP
3: góc MIQ=90 độ-góc MNI
góc MQI=góc NQK=90 độ-góc PNI
mà góc MNI=góc PNI
nên góc MIQ=góc MQI
=>ΔMIQ cân tại M
4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có
IM=IE
góc MIF=góc EIP
=>ΔIMF=ΔIEP
=>MF=EP
Xét ΔNFP có NM/MF=NE/EP
nên ME//FP
a: Xét ΔMAH và ΔBAN có
AM=AB
góc MAH=góc BAN
AH=AN
=>ΔMAH=ΔBAN
=>góc MHA=góc BNA=90 độ
=>NB vuông góc NP
b: BN=MH
MH<MN
=>BN<NM
góc NMA=góc NBH
góc NBH>góc AMH
=>góc NMA>góc AMH
c: ΔNBP vuông tại N có NI là trung tuyến
nên NI=1/2BP
a: Xét ΔMNO và ΔEPO có
OM=OE
\(\widehat{MON}=\widehat{EOP}\)
ON=OP
Do đó: ΔMNO=ΔEPO
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
Do đó: ΔMHN=ΔMHP
b: Xét ΔIGM và ΔIEN có
IG=IE
\(\widehat{GIM}=\widehat{EIN}\)(hai góc đối đỉnh)
IM=IN
Do đó: ΔIGM=ΔIEN
=>\(\widehat{IGM}=\widehat{IEN}\)
=>MG//EN