K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

Hỏi đáp Toán

a, Dễ dàng chứng minh được \(\Delta MNI=\Delta MPI\left(c.c.c\right)\) (phần này dễ, bạn tự chứng minh nha)

b, Theo chứng minh phần a, ta có:

\(\Delta MNI=\Delta MPI\Rightarrow\widehat{IMH}=\widehat{IMK}\)

Từ đây, ta suy ra \(\Delta MHI=\Delta MKI\left(ch-gn\right)\Rightarrow IH=IK\) (đpcm)

(Mình lằm tắt, bạn tự chứng minh đầy đủ nhé)

c, Do \(\Delta MPI\)\(\Delta MKI\) đều vuông và có chung \(\widehat{IMK}\) nên \(\widehat{MIK}=\widehat{PMI}\)

Từ đó, ta suy ra \(\Delta KIP\sim\Delta KMI\left(g.g\right)\Rightarrow\frac{IK}{MK}=\frac{KP}{IK}\)

\(\Rightarrow IK^2=MK\cdot KP\\ \Rightarrow2IK^2=2MK\cdot KP+MK^2-MK^2+KP^2-KP^2\\ \Rightarrow2IK^2=\left(MK+KP\right)^2-MK^2-KP^2\)

\(\Rightarrow2IK^2=MP^2-MK^2-KP^2\) (đpcm)

Chúc bạn học tốt nhaok.

7 tháng 3 2019

M P N I H K

Câu a, b em tự làm nhé nó khá đơn giản

câu c)

Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:

\(IK^2=MI^2-MK^2\)

\(IK^2=IP^2-KP^2\)

Cộng vế theo vế ta có;

\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)

Mà MP=MN

=> Điều p cm

14 tháng 3 2021

Xét tam giác MNI và MPI có

       MI là cạnh chung

       MN = MP( tam giác MNP cân)

       Góc MIN = góc MIP = 90°

=> Tam giác MIN = tam giác MIP( cgv - ch)

IN = IP = 5 cm nên I là trung điểm của NP

b) Tam giác MIN vuông tại I có

NI2 + MI2 = MN2(  định lí Pytago)

MI2 + 52 = 142

MI2 + 25 = 196

MI2 = 144

MI=12

c) Xét tam giác PHI và PKI có

         MI là cạnh chung

         Góc HMI = KMI ( tam giác NMI = PMI )

          Góc IHM = IKM = 90° 

=》 Tam giác HMI = KMI ( ch - gn)

=》IH=IK

29 tháng 2 2020
https://i.imgur.com/YzrjsNw.jpg
29 tháng 2 2020

e) Gọi O là giao điểm của IP và HK. Chứng minh \(\widehat{MON}\) = 180o + \(\widehat{PMO}+\widehat{PNO}+\widehat{HIK}\)

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP