Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\Delta MNP\)cân tại M
=> \(MN=MP\)và \(\widehat{MPN}=\widehat{MNP}=70^0\)
=> \(\widehat{NMP}=180^0-\left(\widehat{MNP}+\widehat{MPN}\right)=180^0-\left(70^0+70^0\right)=180^0-140^0=40^0\)
b) Ta có : \(MN=MH+HN\)
\(MP=MK+KP\)
Mà \(MN=MP,NH=KP\)=> \(MH=MK\)
Xét \(\Delta MHK\)có :
\(MH=MK\left(cmt\right)\)
=> \(\Delta MHK\)cân tại M ( đpcm )
c) \(\Delta MHK\)cân tại M
=> \(\widehat{H}=\widehat{K}\)( hai góc ở đáy ) ( 1 )
Ta có : \(\widehat{M}+\widehat{H}+\widehat{K}=180^0\)
\(40^0+\widehat{H}+\widehat{K}=180^0\)
\(\widehat{H}+\widehat{K}=180^0-40^0=140^0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{H}=\widehat{K}=\frac{140^0}{2}=70^0\)
Ta có : \(\widehat{H}=\widehat{N}=70^0\)
mà hai góc ở vị trí đồng vị
=> \(HK//NP\)( đpcm )
* Hình ở Thống kê hỏi đáp *
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)
Xét ΔMNK có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMNK cân tại M
a: Xet ΔMNE và ΔMPE có
MN=MP
NE=PE
ME chung
=>ΔMNE=ΔMPE
b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có
ME chung
góc HME=góc KME
=>ΔMHE=ΔMKE
=>EH=EK
c: MH=MK
EH=EK
=>ME là trung trực của HK
Bạn có thể vẽ hình cho mình đc ko?
@Sen Ninh
Tối nhé bạn :>>