Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chân đường cao hạ từ A của tam giác ABC là H, K là giao của phân giác ngoài góc B và AH.
Đặt \(IH=x\left(x>0\right)\)
Theo hệ thức lượng: \(IB^2=IH.IK\Rightarrow IK=\frac{IB^2}{IH}=\frac{9}{x},KH=IK-IH=\frac{9}{x}-x\)
Theo định lí đường phân giác, ta có: \(\frac{IH}{IA}=\frac{KH}{KA}\)
Hay \(\frac{x}{2\sqrt{5}}=\frac{\frac{9}{x}-x}{\frac{9}{x}+2\sqrt{5}}\Leftrightarrow9+2\sqrt{5}x=\frac{18\sqrt{5}}{x}-2\sqrt{5}x\)
\(\Leftrightarrow4\sqrt{5}x^2+9x-18\sqrt{5}=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{5}}{4}\\x=-\frac{6\sqrt{5}}{5}\left(l\right)\end{cases}}\)
Vậy \(AB=\sqrt{HA^2+HB^2}=\sqrt{\left(IH+IA\right)^2+IB^2-IH^2}\)
\(=\sqrt{\left(\frac{3\sqrt{5}}{4}+2\sqrt{5}\right)^2+3^2-\left(\frac{3\sqrt{5}}{4}\right)^2}=2\sqrt{11}.\)
Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.
Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5.
=> IK= KH= x( x>0)
Xét tam giác ABH vuông tại A=> AH2= HK x BH
<=> AH2= x(2x+3). Mà AH= 2 căn 5
=> x(2x+3)= 20=>x=2.5
Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)