K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

b: Xét tứ giác ANHM có 

\(\widehat{ANH}+\widehat{AMH}=180^0\)

Do đó: ANHM là tứ giác nội tiếp

hay A,N,H,M cùng thuộc 1 đường tròn

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
1. 

Xét tứ giác $HNMK$ có $\widehat{HNK}=\widehat{HMK}=90^0$. Mà 2 góc này cùng nhìn cạnh $HK$ nên $HNMK$ là tứ giác nội tiếp.

$\Rightarrow H,N,M,K$ cùng thuộc 1 đường tròn.

2.

Xét tứ giác $INPM$ có tổng 2 góc đối nhau $\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0$ nên $INPM$ là tứ giác nội tiếp.

$\Rightarrow I,N, P,M$ cùng thuộc 1 đường tròn.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Hình vẽ:

1: Xét tứ giác HNMK có

\(\widehat{HNK}=\widehat{HMK}=90^0\)

=>HNMK là tứ giác nội tiếp đường tròn đường kính HK

=>H,N,M,K cùng thuộc 1 đường tròn

2: Xét tứ giác INPM có

\(\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0\)

=>INPM là tứ giác nội tiếp

=>I,N,P,M cùng thuộc 1 đường tròn

a) Xét tứ giác BIKC có 

\(\widehat{BIC}=\widehat{BKC}\left(=90^0\right)\)

nên BIKC là tứ giác nội tiếp

hay B,I,K,C cùng thuộc đường tròn đường kính BC(Vì \(\widehat{BIC}=\widehat{BKC}=90^0\))

b) Xét tứ giác AIHK có 

\(\widehat{AIH}+\widehat{AKH}=180^0\)

nên AIHK là tứ giác nội tiếp

hay A,I,H,K cùng thuộc 1 đường tròn

10 tháng 12 2023

a: Xét tứ giác AHIK có

\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)

=>AHIK là tứ giác nội tiếp

=>A,H,I,K cùng thuộc một đường tròn

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó ΔACD vuông tại C

=>AC\(\perp\)CD

Ta có: BH\(\perp\)AC

AC\(\perp\)CD

Do đó:BH//CD

c: Ta có: BH//CD

I\(\in\)BH

Do đó: BI//CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó; ΔABD vuông tại B

Ta có:BD\(\perp\)BA

CI\(\perp\)BA

Do đó:BD//CI

Xét tứ giác BICD có

BI//CD

BD//CI

Do đó: BICD là hình bình hành

25 tháng 10 2023

Xét tứ giác BNMC có

\(\widehat{BNC}=\widehat{BMC}=90^0\)

=>BNMC là tứ giác nội tiếp đường tròn đường kính BC

=>BNMC nội tiếp (I)

Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp đường tròn đường kính AH

=>AMHN nội tiếp (K)

Gọi giao điểm của AH với BC là E

Xét ΔABC có

CN,BM là đường cao

CN cắt BM tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại E

\(\widehat{KNH}+\widehat{INH}=\widehat{KNI}\)

\(\Leftrightarrow\widehat{KNI}=\widehat{KHN}+\widehat{NCB}\)

\(=\widehat{EHC}+\widehat{ECH}=90^0\)

\(\widehat{KMI}=\widehat{KMB}+\widehat{IMB}\)

\(=\widehat{KHM}+\widehat{MBC}\)

\(=\widehat{MBC}+\widehat{MCB}=90^0\)

Xét tứ giác KNIM có

\(\widehat{KNI}+\widehat{KMI}=180^0\)

=>KNIM nội tiếp