K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

M P N I H K a,Ta có: \(PN^2=PI^2+IN^2\)

\(PN^2=8^2+6^2\)

\(PN=\sqrt{64+36}\)

PN= 10 (cm)

\(\Rightarrow PM=10\) cm (\(\Delta MNP\) cân tại P)

14 tháng 3 2019

b, Ta có: \(PN^2=PN^2+PI^2\)

\(\Rightarrow IN=\sqrt{PN^2-PI^2}\) (1)

\(PM^2=PI^2+PI^2\)

\(\Rightarrow IM=\sqrt{PM^2-PI^2}\) (2)

Ta lại có: PM=PN

Từ (1) và (2) ta suy ra: IN=IM

Xét \(\Delta PMI\)\(\Delta PNI\) có:

PM=PN (\(\Delta MNP\) cân tại P)

PI: cạnh chung

IN=IM (cmt)

Do đó: \(\Delta PMI=\Delta PNI\) (c.c.c)

3 tháng 1 2020

P N M H K I Q

GT

 △MNP cân tại P.   MN = 6cm,   NPI = MPI = NPM/2 ,  (I \in MN)

 IK ⊥ PM ,  IH ⊥ PN . IQ = IM 

KL

 a, △MPI = △NPI

 b, HIP = PIK

 c, △MIQ vuông cân. MQ = ?

 d, Nếu PKH đều, điều kiện △MNP

Bài làm:

a,  Vì △MNP cân tại P => PN = PM

Xét △NPI và △MPI

Có: NP = MP (gt)

      NPI = MPI (gt)

    PI là cạnh chung

=> △NPI = △MPI (c.g.c)

b, Xét △HPI vuông tại H và △KPI vuông tại K

Có: PI là cạnh chung

   HPI = KPI (gt)

=> △HPI = △KPI (ch-gn)

=> HIP = PIK (2 góc tương ứng)

Mà IP nằm giữa IH, IK

=> IP là phân giác KIH

c, Ta có: PIN = MIQ (2 góc đối đỉnh)

Mà PIN = 90o (gt)

=> MIQ = 90o    (1) 

Xét △MIQ có: IQ = IM => △MIQ cân tại I   (2)

Từ (1), (2) => △MIQ vuông cân tại I

Vì △NPI = △MPI (cmt) 

=> IN = IM (2 cạnh tương ứng)

Mà MN = IN + IM = 6 (cm)

=> IN = IM = 6 : 2 = 3 (cm)

Mà IM = IQ 

=> IM = IQ = 3 (cm)

Xét △MIQ vuông tại I có: IQ2 + IM2 = MQ2 (định lý Pitago)

=> 32 + 32 = MQ2

=> 9 + 9 = MQ2

=> 18 = MQ2

=> MQ = \(\sqrt{18}=3\sqrt{2}\)

d, Để △PHK đều <=> HPK = PKH = KHP = 60o

=> △MNP có NPM = 60o mà △MNP cân

=> △MNP đều

Vậy để △PKH đều <=> △MNP đều

29 tháng 2 2016

giúp vs mình cần gấp :(((

14 tháng 2 2016

moi hok lop 6

a: PN=10cm

b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có

PK chung

\(\widehat{MPK}=\widehat{EPK}\)

Do đó: ΔPMK=ΔPEK

c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có

KM=KE

\(\widehat{MKD}=\widehat{EKN}\)

DO đó: ΔMKD=ΔEKN

Suy ra: KD=KN

d: Ta có: PM+MD=PD

PE+EN=PN

mà PM=PE

và MD=EN

nên PD=PN

hayΔPDN cân tại P

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0