K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

xét tam giác

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)

hay \(\widehat{ACB}=30^0\)(1)

Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)

nên AB<AC<BC

b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)

c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔDBC cân tại D(Định lí đảo của tam giác cân)

Xét ΔBDK vuông tại K và ΔCDK vuông tại K có 

DB=DC(ΔDBC cân tại D)

DK chung

Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)

Suy ra: BK=CK(hai cạnh tương ứng)

hay K là trung điểm của BC(Đpcm)

a: MP=12cm

b: Xét ΔNMD và ΔNED có 

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

Do đó:ΔNMD=ΔNED

Suy ra: DM=DE
hay ΔDME cân tại D

a: Xét ΔEDK có 

EM là đường cao

EM là đường phân giác

Do đó: ΔEDK cân tại E

b: Xét ΔEDM và ΔEKM có

ED=EK

\(\widehat{DEM}=\widehat{KEM}\)

EM chung

DO đó: ΔEDM=ΔEKM

Suy ra: DM=DK

mà ED=EK

nên EM là đường trung trực của DK