Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi
a, tam giác MND cân tại M (gt)
=> ^MND = ^MDN (tc)
^MND + ^MNB = 180 (kb)
^MDN + ^MDA = 180 (kb)
=> ^MNB = ^MDA
xét tam giác MNB và tam giác MDA có BN = DA (gt)
MN = MD do tam giác MND cân tại M (gt)
=> tg MNB = tg MDA (c-g-c)
=> MA = MB (đn)
=> tg MAB cân tại M (Đn)
b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)
^AHD = ^BKN = 90
^A = ^B do tam giác MAB cân tại M (câu a)
=> tg DHA = tg NKB (ch-gn)
=> DH = KN (đn)
c, tg DHA = tg NKB (câu b)
=> AH = KB (đn)
có MA = MB (câu a)
AH + MH = AM
MK + KB = BM
=> MH = MK
d, có ^HDA = ^KNB do tg DHA = tg NKB (Câu b)
^HDA = ^NDI (đối đỉnh)
^KNB = ^DNI (đối đỉnh)
=> ^NDI = ^DNI
=> tam giác DNI cân tại I
a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)
\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)
mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)
nên \(\widehat{MNA}=\widehat{MPB}\)
Xét ΔMNA và ΔMPB có
MN=MP(ΔMNP cân tại M)
\(\widehat{MNA}=\widehat{MPB}\)(cmt)
AN=PB(gt)
Do đó: ΔMNA=ΔMPB(c-g-c)
Suy ra: MA=MB(hai cạnh tương ứng)
Xét ΔMAB có MA=MB(cmt)
nên ΔMAB cân tại M(Định nghĩa tam giác cân)
b) Sửa đề: PE vuông góc với MB
Ta có: ΔMAN=ΔMBP(cmt)
nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)
hay \(\widehat{DMN}=\widehat{EMP}\)
Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
MN=MP(ΔMNP cân tại M)
\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)
Suy ra: MD=ME(hai cạnh tương ứng)
c) Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)
hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)
Ta có: ΔMAB cân tại M(cmt)
nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)
Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)
mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị
nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Câu 1. bạn cm tam giác ABM bằng tg ECM suy ra góc BAM và CEM bằng nhau, AB bằng CE. mà AB nhỏ hơn AC nên CE nhỏ hơn AC. Xét tg ACE có CAE nhỏ hơn góc CEA. Suy ra góc CAE nhỏ hơn góc ABM.
Câu 2. cm tam giác ABD và EBD bằng nhau sra DE vuông góc với BC, AH//ED. Kéo dài DE Cắt AB tại K.cm 2 tam giác DEC và DAK bằng nhau. EC bằng AK. So sánh AK và EH bằng cách vẽ AM vuông góc với EK. Cm HE bằng AM. So sánh AM và AK trong tam giác vuông AMK có AM nhỏ hơn AK. Vậy HE nhỏ hơn EC. Chúc bạn học tốt.
a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có
AH chung
\(\widehat{EAH}=\widehat{IAH}\)
Do đó: ΔAHE=ΔAHI
Xét ΔAHN có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAHN cân tại A
b: Ta có: HN=2HE
HM=2HI
mà HE=HI
nên HN=HM
Xét ΔAHM có
AI là đường cao
AI là đường trung tuyến
DO đó: ΔAHM cân tại A
=>AH=AM=AN
Ta có: AM=AN
HM=HN
Do đó: AH là đường trung trực của MN
a: Xét ΔMAE và ΔMBE có
MA=MB
\(\widehat{AME}=\widehat{BME}\)
ME chung
Do đó: ΔMAE=ΔMBE
b: Xét ΔMHE vuông tại H và ΔMKE vuông tại K có
ME chung
\(\widehat{HME}=\widehat{KME}\)
Do đó:ΔMHE=ΔMKE
Suy ra: EH=EK
c: Ta có: ΔMAB cân tại M
mà ME là đường trung tuyến
nên ME là đường cao
=>ΔEBI vuông tại E
em cảm ơn ạ