K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Gọi S' là giao điểm của TV và FC

Ta sẽ chứng minh S trùng với S' bằng cách chứng minh HS' và HS cùng vuông góc với FC.

Thật vậy:

\(\Delta FTV\)cân tại F nên \(\widebat{FT}=\widebat{FV}\)

Do đó \(\widehat{FCV}=\widehat{FVS'}\)

Từ đó suy ra \(\Delta FCV~\Delta FVS'\left(g.g\right)\)

Suy ra \(FS'.FC=FV^2\)

Mà FV = FH nên \(FS'.FC=FH^2\)

Từ đó suy ra \(\Delta FS'H~\Delta FHC\left(c-g-c\right)\)

\(\Rightarrow\widehat{FS'H}=\widehat{FHC}=90^0\)

\(\Rightarrow HS'\perp FC\)

Dễ dàng chứng minh được \(HS\perp FC\)

Lúc đó thì S trùng S'

Vậy T, V, S thẳng hàng (đpcm)

19 tháng 2 2020

câu a thật sự ko ra,xl bn nha

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
20 tháng 5 2018

Ai trả lời hộ điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

20 tháng 5 2018

tôi học lớp 7 thôi

6 tháng 6 2018

A B C D O M N E I H P

a) Ta có: DE là tiếp tuyến của (O) nên ^ODE=900 . Mà OH vuông góc BE

=> ^OHE=900 => ^ODE=^OHE.

Xét tứ giác OHDE: ^OHE=^ODE=900 => Tứ giác OHDE nội tiếp đường tròn. (đpcm).

b) Dễ thấy ^EDC=^EBD (T/c góc tạo bởi tiếp tuyến và dây cung)

=> \(\Delta\)ECD ~ \(\Delta\)EDB (g.g) => \(\frac{ED}{EB}=\frac{EC}{ED}\Rightarrow ED^2=EC.EB.\)(đpcm).

c) Tứ giác OHDE nội tiếp đường tròn (cmt) => ^OEH=^ODH.

Lại có: CI//OE => ^OEH=^ICH => ^ICH=^ODH hay ^ICH=^IDH

=> Tứ giác HICD nội tiếp đường tròn => ^HID=^HCD=^BCD

Do tứ giác ABDC nội tiếp (O) => ^BCD=^BAD.

Do đó ^HID=^BAD. Mà 2 góc bên ở vị trí đồng vị => HI//AB (đpcm).

d) Gọi giao điểm của tia CI với AB là P.

Ta thấy: Đường tròn (O) có dây cung BC và OH vuông góc BC tại H => H là trung điểm BC.

Xét \(\Delta\)BPC: H là trung điểm BC; HI//BP (HI//AB); I thuộc CP => I là trung điểm CP => IC=IP (1)

Theo hệ quả của ĐL Thales; ta có: \(\frac{IP}{DM}=\frac{AI}{AD};\frac{IC}{DN}=\frac{AD}{AI}\Rightarrow\frac{IP}{DM}=\frac{IC}{DN}\)(2)

Từ (1) và (2) => DM=DN (đpcm).

6 tháng 6 2018

k mình nha