Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác NMD và tam giác NED, có:
NM=EH(gt)
\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)
ND là cạnh chung
Suy ra: Tam giác NMD=tam giác NED (c.g.c)
==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)
b) Có: +) MN vuông góc MP
+) EH vuông góc MP
==> MN // EH
c) Có : MN // EH
==> MNP = HEP (2 góc đồng vị)
Bài 1:
a) Ta có: MN2+MP2=152+202=625
NP2=252=625
=> MN2+MP2=NP2
=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)
=> đpcm
b) Ta có I là trung điểm MP
=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)
Xét \(\Delta MNI\)vuông tại M có:
MN2+MI2=NI2 ( theo định lý Py-ta-go)
= 152+102=325
=> NI= \(\sqrt{325}\approx18\left(cm\right)\)
Bài 2:
Xét \(\Delta ABD\)vuông tại D có:
\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)
\(\Rightarrow AD^2+15^2=17^2\)
\(\Rightarrow AD^2=17^2-15^2=64=8^2\)
\(\Rightarrow AD=8\left(cm\right)\)
Lại có: AC=AD+DC
=> 17=8+DC
=> DC=9 cm
Xét \(\Delta BDC\)vuông tại D có:
\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)
\(\Rightarrow BC^2=15^2+9^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)
Vậy BC\(\approx\)17 cm