K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 7 2022

\(cos\widehat{K}=\dfrac{HK}{KI}=\dfrac{19}{25}\Rightarrow\widehat{K}=arccos\dfrac{19}{25}\)

\(DI=\sqrt{KI^2-HK^2}=\sqrt{25^2-19^2}=2\sqrt{66}\left(cm\right)\)

\(\dfrac{1}{DH^2}=\dfrac{1}{HI^2}+\dfrac{1}{HK^2}=\dfrac{1}{264}+\dfrac{1}{361}=\dfrac{625}{95304}\)

\(\Rightarrow DH=\sqrt{\dfrac{95304}{625}}\left(cm\right)\)

Xét tam giác \(DHI\) vuông tại \(D\) đường cao \(DF\)

\(DH^2=HF.HI\) (hệ thức trong tam giác vuông) 

Xét tam giác \(DHK\) vuông tại \(D\) đường cao \(DE\):

\(DH^2=HE.HF\) (hệ thức trong tam giác vuông) 

suy ra \(HE.HK=HF.HI\).

23 tháng 10 2023

ΔKHD vuông tại K có KM là đường cao

nên \(HM\cdot HD=HK^2\)

=>\(HM=\dfrac{HK^2}{HD}\)

Xét ΔKHF vuông tại K có KN là đường cao

nên \(HN\cdot HF=HK^2\)

=>\(HN=\dfrac{HK^2}{HF}\)

Xét ΔHDF vuông tại H có HK là đường cao

nên HK*DF=HD*HF

=>\(DF=\dfrac{HD\cdot HF}{HK}\)

\(HM\cdot HN\cdot DF\)

\(=\dfrac{HK^2}{HD}\cdot\dfrac{HK^2}{HF}\cdot DF\)

\(=\dfrac{HK^4}{HK}=HK^3\)

=>\(HM\cdot HN=\dfrac{HK^3}{DF}\)

=>\(S_{HMKN}=\dfrac{HK^3}{DF}\)

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

22 tháng 9 2017

Mk chưa học dạng này vì mk mới học lớp 6 mà mấy bạn giúp mk tăng điểm hỏi đáp nha

22 tháng 9 2017

D H K A M N C

Tam giác DHK vuông => \(DK=\sqrt{HK^2-DH^2}=\sqrt{10^2-6^2}=8\)

\(HK.DA=DH.DK\) ( cùng bằng 2 lần diện tích tam giác DHK)

=> \(DA=\frac{DH.DK}{HK}=\frac{6.8}{10}=4,8\)

AMDN là hình chữ nhật (vì tứ giác có các góc đều vuông)

=> \(AC=\frac{1}{2}DA=2,4\)

1 tháng 7 2021

A B C M N O S D H E F K P Q I J

a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.

b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ

Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)

c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.

Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)

Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH

Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:

\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC

Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ

Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.

28 tháng 4 2018

Xét tứ giác MIHK ta có M ^ = I ^ = K ^ = 90 0

=> MIHK là hình chữ nhật (dhnb)

=> HI = ML = 6cm

Áp dụng định lý Pytago cho MHK vuông tại K ta có:

Áp dụng hệ thức lượng trong MHP vuông tại H có đường cao HI ta có:

Áp dụng định lý Pytago cho MNP vuông tại N ta có:

Đáp án cần chọn là: B

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)