Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì ΔBHD vuông tại H nên BH<BD
Để BH=BD thì H trùng với D
b: BD<BC/2
=>BD<CD
=>HC>BK
a: Xet ΔBHA vuông tại H và ΔCKA vuông tại K có
BA=CA
góc BAH=góc CAK
=>ΔBHA=ΔCKA
=>BH=CK
b: Xét ΔDAC có
AM,CK là đường cao
AM căt CK tại I
=>I là trực tâm
=>DI vuông góc AC
tình hình là cháu cx ko bt lm nên phk trông cậy vào cu khoa
a: ΔHBA vuông tại B
=>HB<HA
AB<BC
=>HA<HC
=>HB<HA<HC
b: Vì HA<HC
nên góc HAC>góc HCA
Tham khảo:
a) Vì tam giác ABC vuông tại A nên \(\widehat{A}=90^0; \widehat{B}+\widehat{C}=90^0\)
Vì \(\widehat B > {45^o} \Rightarrow \widehat C < {45^o} \Rightarrow \widehat A > \widehat B > \widehat C \Rightarrow BC > AC > AB\)
b) Vì \(\widehat {BKC}\) là góc ngoài tại đỉnh K của tam giác ABK nên \(\widehat {BKC}>(\widehat {BAK}=90^0\)
Xét tam giác BCK, ta có :
\(\widehat {BKC} > {90^o} > \widehat {BCK}\)
\( \Rightarrow BC > BK\) ( quan hệ giữa góc và cạnh đối diện trong tam giác)
a) xét \(\Delta HAC:\widehat{H}=90^o\)
\(\Rightarrow AH^2+HC^2=AC^2\)(đlý pytago)(1)
xét tam giác \(BHC:\widehat{H}=90^o\)
\(BH^2+HC^2=BC^2\)(đlý pytago)(2)
vì \(A\in BH\Rightarrow AH< BH\Rightarrow AH^2< BH^2\)(3)
từ (1);(2) và (3)
\(\Rightarrow BC^2>AC^2\Rightarrow BC>AC\)
b) xét tam giác \(AHD:\widehat{H}=90^o\)\(\Rightarrow AH^2+HD^2=AD^2\)(đ/lý pytago)(4)
lại có \(D\in HC\Rightarrow HD< HC\Rightarrow HD^2< HC^2\)(5)
từ (2);(4) và (5)
=>\(BC^2>AD^2\Rightarrow BC>AD\)