Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔDEG vuông tại D và ΔIED vuông tại I có
góc E chung
=>ΔDEG đồng dạng với ΔIED
b: MI/MD=EI/ED(EM là phân giác)
=>MI*ED=MD*EI
![](https://rs.olm.vn/images/avt/0.png?1311)
3. \(\dfrac{ID}{IA}=\dfrac{DE}{AE};\dfrac{CF}{AF}=\dfrac{CE}{AE}\)
\(\dfrac{ID}{IA}+\dfrac{CF}{AF}=\dfrac{DE}{AE}+\dfrac{CE}{AE}=\dfrac{DC}{AE}\)
-Ghi đề cho rõ ràng vào: △ADC chứ không phải là △ABC.
![](https://rs.olm.vn/images/avt/0.png?1311)
E M K N i
a) Vì EI là đường trung tuyến ứng với cạnh huyền MN
\(\Rightarrow MI=IM=EI=\frac{25}{2}=12,5\left(cm\right)\)
b) Vì MI = IN, IE = IK và MN giao EK tại I
=> tứ giác EMKN là hình bình hành
mà \(\widehat{MEN}=90^0\)=> tứ giác EMKN là hình chữ nhật ( đpcm )
c) Để hình chữ nhật EMKN là hình vuông thì ME = EN ( dấu hiệu nhận biết hình vuông )
Từ đây suy ra tam giác EMN vuông cân tại E
Vậy tam giác EMN vuông cân tại E thì tứ giác EMKN là hình vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BF vuông góc AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có
góc FEA=góc HEB
=>ΔEFA đồng dạng với ΔEHB
=>EF/EH=EA/EB
=>EF*EB=EA*EH
c: Xét ΔBAK và ΔBDK có
BA=BD
góc ABK=góc DBK
BK chung
=>ΔBAK=ΔBDK
=>góc BDK=90 độ
=>DK vuông góc BC
=>DK//AH
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI