Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C K E
a/ Xét tam giác AKB và tam giác AKC có:
AB = AC (GT)
BK = CK (GT)
AK: cạnh chung
=> tam giác AKB = tam giác AKC (c.c.c)
Ta có: tam giác AKB = tam giác AKC
=> góc AKB = góc AKC (2 góc tương ứng)
Mà góc AKB + góc AKC = 1800
=> góc AKB = góc AKC = 1800 : 2 = 900
Vậy AK vuông góc BC (đpcm)
b/ Ta có: \(\begin{cases}AK\perp BC\\EC\perp BC\end{cases}\)=> EC // AK (đpcm)
c/ Ta có: AC: chung (1)
Ta có: góc BAC + góc CAE = 1800
hay 900 + CAE = 1800
=> góc CAE = 900
=> góc BAC = góc CAE (2)
Trong tam giác vuông cân ABC có:
góc ABC + góc ACB = 900
Vì tam giác ABC cân nên góc ABC = góc ACB
=> góc ABC = góc ACB = 900:2 = 450
Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)
hay 450 + góc ACE = 900
=> góc ACE = 450
Vậy góc ACB = góc ACE = 450 (3)
Từ (1),(2),(3) => tam giác ACB = tam giác ACE
=> CE = CB (2 cạnh tương ứng) (đpcm)
a: Xét ΔAOC và ΔBOC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó:ΔAOC=ΔBOC
b: Ta có: ΔAOC=ΔBOC
nên CA=CB và \(\widehat{OCA}=\widehat{OCB}\)
hay CO là tia phân giác của góc BCA
Cậu tự vẽ hình nha !
a) Vì M là trung điểm của BC
=> MB = MC
Xét 2 tam giác BAM và CAM có :
BA = CA
BM = MC
AM là cạnh chung
=> Tam giác BAM = CAM
=> BAM = MAC
AMB = AMC (1)
ABM = ACM
Vì AM chia góc BAC thành 2 góc bằng nhau mà lại nằm trong
=> AM là phân giác của BAC
b) Vì AMB và AMC là 2 góc kề bù
=> AMB + AMC = 180
Từ (1)
=> 2.AMB = 180
=> AMB = 90
=> AD vuông góc với BC
=> AMD = CME = EMB = BMA = 90
Ta có
=> DMC + CME = 90 + 90 = 180 (góc bẹt)
=> D ; M ; E cùng nằm trên 1 đường thẳng
a: Xét ΔFIH vuông tại H và ΔGIK vuông tại K có
FI=GI
\(\widehat{FIH}=\widehat{GIK}\)
Do đó: ΔFIH=ΔGIK
b: Xét tứ giác FHGK có
I là trung điểm của HK
I là trung điểm của FG
Do đó: FHGK là hình bình hành
Suy ra: GH=FK