K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Do tam  giác ABC là tam giác đều nên đường cao AH đồng thời là đường trung tuyến nên H là trung điểm BC:  B H = H C = B C 2

Đáp án B

16 tháng 6 2019

a2 = b2 + c2

b2 = a x b'

c2 = a x c'

h2 = b’ x c'

ah = b x c

Giải bài tập Toán 10 | Giải Toán lớp 10

a: vecto AB=(1;-1); vecto AC=(2;1); vecto BC=(1;2)

AB có VTPT là (1;1)

Phương trình AB là;

1(x-1)+1(y+1)=0

=>x+y=0

AC có VTPT là (-1;2)

PT AC là:

-1(x-1)+2(y+1)=0

=>-x+1+2y+2=0

=>-x+2y+3=0

BC có VTPT là (-2;1)

PT BC là;

-2(x-2)+1(y+2)=0

=>-2x+y+6=0

b: AH có VTPT là (1;2)

Phương trình AH là:

1(x-1)+2(y+1)=0

=>x-1+2y+2=0

=>x+2y+1=0

a: vecto AB=(-7;1)

vecto AC=(1;-3)

vecto BC=(8;-4)

b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)

a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)

Vì -11/-2<>11/6

nên A,B,C thẳng hàng

ABCD là hình bình hành

=>vecto DC=vecto AB

=>5-x=-11 và 4-y=11

=>x=16 và y=-7

b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)

Theo đề, ta có: 

(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0

=>-5x-20=9y-81 và 9x-63-5y-10=0

=>-5x-9y=-61 và 9x-5y=73

=>x=481/53; y=92/53

c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0

Thay x=-2 và y=3 vào (d'), ta được:

c+4*(-2)+3*3=0

=>c=-1

giúp mình với: Bài 1: (3 điểm) Cho biểu thức 2 x 3 x 9 2x 2 A : x 3 x x 3x x              a) Tìm ĐKXĐ của biểu thức A b) Rút gọn biểu thức A c) Tính giá trị của biểu thức A khi x2 – 5x + 6 = 0 d) Tìm giá trị nguyên của x để biểu thức A có giá trị là số nguyên Bài 2: (1,5 điểm) a) Cho hai phương trình ẩn x là 3x + 3 = 0 (1) 5 – kx = 7 (2) Tìm giá trị của k sao cho nghiệm của phương trình (1) là...
Đọc tiếp

giúp mình với:

Bài 1: (3 điểm) Cho biểu thức 2 x 3 x 9 2x 2 A : x 3 x x 3x x              a) Tìm ĐKXĐ của biểu thức A b) Rút gọn biểu thức A c) Tính giá trị của biểu thức A khi x2 – 5x + 6 = 0 d) Tìm giá trị nguyên của x để biểu thức A có giá trị là số nguyên Bài 2: (1,5 điểm) a) Cho hai phương trình ẩn x là 3x + 3 = 0 (1) 5 – kx = 7 (2) Tìm giá trị của k sao cho nghiệm của phương trình (1) là nghiệm của phương trình (2) b) Giải phương trình 20 x 22 x 24 x 26 x 3 4 5 6        Bài 3: (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Có AH là đường cao. Từ H vẽ HD vuông góc với cạnh AB tại D, vẽ HE vuông góc với cạnh AC tại E. a) Chứng minh tứ giác ADHE là hình chữ nhật b) Giả sử AB = 15cm, BC = 25cm. Tính diện tích tam giác ABC c) Lấy điểm F đối xứng với điểm E qua A. Chứng minh tứ giác AFDH là hình bình hành d) Gọi M là giao điểm của DE và AH, AN là đường trung tuyến của tam giác ABH. Chứng minh CM  AN.

0
NV
8 tháng 1 2023

\(\overrightarrow{BC}=\left(2;4\right)=2\left(1;2\right)\)

Do đường cao AH vuông góc BC nên nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AH qua A có dạng:

\(1\left(x-2\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-4=0\)

AH (1;2) => vtpt

Phương trình AH qua A có dạng: 

1(�−2)+2(�−1)=0⇔�+2�−4=0

3 tháng 5 2017

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85