K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Xét tam giác ADE có: AD=AE(gt) =>tam giác ADE cân tại A=> góc ADE=góc AED=(180độ -góc A)/2           (1)

Vì tam giác ABC đều=>góc ABC=góc ACB=(180độ - góc A)/2 =60độ (2)  hay góc EBC=góc ECB=60độ                                                          

Từ (1) và (2)=>góc AED = góc ADE= góc ACB = góc ABC = (180độ - góc A)/2.

=>góc ADE=góc ABC. Mà 2 góc ở vị trí đồng vị =>ED//BC => Tứ giác DBCE là 1 hình thang                      

Mà góc DBC= góc ECB (chứng minh trên)=> DBCE là 1 hình thang cân

b) Theo câu a, ta có :góc ADE=góc DBC( 2 góc đồng vị do ED//BC).  Mà góc DBC =60 độ=> góc ADE= 60 độ

Hay ta có góc D= góc B= 60 độ

  

10 tháng 9 2017

a) Ta có AD =  AE nên  ∆ADE cân

Do đó  ˆD1= ˆE1

Trong tam giác ADE có:  D1^ +  ˆE1 + ˆA^=1800

Hay 2ˆD1 = 1800 -  ˆA

ˆD1 = 180 độ −ˆA/2

Tương tự trong tam giác cân ABC ta có ˆB= 180−ˆA/2

Nên ˆD1 = ˆB ( hai góc đồng vị.)

Suy ra DE // BC

Do đó BDEC là hình thang.

Lại có ˆB = ˆC

Nên BDEC là hình thang cân.

b) Với ˆA=500

Ta được ˆB = ˆC = 180−ˆA/2= 180-50/2=65 độ

ˆD2=ˆE2=1800 - ˆB= 1800 - 650=1150

19 tháng 6 2020

A B C D E 1 1 2 2

a) Ta có : AD = AE => \(\Delta ADE\)cân 

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\)

\(\Delta ADE\)có : \(\widehat{A}+\widehat{D_1}+\widehat{E_1}=180^o\)

Mà \(\widehat{D_1}=\widehat{E_1}\)nên \(\widehat{A}+2.\widehat{D_1}=180^o\)

\(\Rightarrow2.\widehat{D_1}=180^o-\widehat{A}\Rightarrow\widehat{D_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)( Vì tam giác ABC cân tại A )

\(\Rightarrow\widehat{A}+2.\widehat{B}=180^o\Rightarrow\widehat{B}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1)(2) => \(\widehat{D_1}=\widehat{B}\)

Mà hai góc ở vị trí đồng vị => DE // BC

=> Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b) 

\(\widehat{A}=50^o\)thay vào (2) ta được :

\(\widehat{B}=\frac{180^o-50^o}{2}=65^o\)

Ta lại có : \(\widehat{B}=\widehat{C}\Rightarrow\widehat{C}=50^o\)

\(DE//BC\Rightarrow\widehat{D_1}+\widehat{B}=180^o\)

\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}=115^o\)

DECB là hình thang cân 

\(\Rightarrow\widehat{E_2}=\widehat{D_2}\Rightarrow\widehat{E_2}=115^o\)

Vậy : \(\widehat{B}=\widehat{C}=65^o\)\(\widehat{D_2}=\widehat{E_2}=115^o\)

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

16 tháng 9 2021

a) Ta xét: Tam giác ADE có: AD = AE

=> Tam giác ADE cân tại A

\(\Rightarrow\widehat{AED}=\widehat{ACB}\)

=> DE//BC

Ta xét: Tứ giác DECB có: DE//BC

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

=> BDEC là hình thang cân

b) \(\widehat{ABC}=\frac{1}{2}\left(180^o-50^o\right)=65^o\)

\(\widehat{ACB}=\widehat{ABC}=65^o\)

\(\widehat{DEC}=180^o-65^o=115^o\)

\(\widehat{EDB}=\widehat{EDC}=115^o\)

E C B D A

28 tháng 6 2017

Hình vẽ:

Hỏi đáp Toán

a)Xét \(\Delta ADE\) có:AD=AE(gt)

\(\Rightarrow\Delta ADE\) cân tại A

\(\Rightarrow\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\) (1)

Ta lại có:\(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ACB}\)

\(\Rightarrow\) DE song song với BC

Xét tứ giác DEBC có:

DE song song với BC

\(\widehat{ABC}=\widehat{ACB}\) ( 2 góc đáy của tam giác ABC cân tại A)

\(\Rightarrow\) BDEC là hình thang cân

\(\Rightarrow\widehat{BDE}=\widehat{CED}\)

b) Theo câu a có:\(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-50^o}{2}=60^0\)

\(\widehat{ABC}=\widehat{ACB}\) ( câu a) nên \(\widehat{ABC}=60^o\)

Vì DE song song với BC\(\Rightarrow\) góc DEC+ góc BCE=180o

=>góc DEC+60o =180o

=>góc DEC=120o\(\widehat{BDE}=\widehat{CED}\)

=>BDE=120o

6 tháng 9 2019

Ban sai doan tinh goc ACB

8 tháng 9 2018

Các bạn bỏ câu c nhé

8 tháng 9 2018

Bạn kham khảo nha:

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math

25 tháng 8 2016

D E A B C

a) Ta có AD =  AE nên  ∆ADE cân

Do đó   = 

Trong tam giác ADE có:   +   + =1800

Hay 2 = 1800 -  

 

 = 

Tương tự trong tam giác cân ABC ta có  = 

Nên  =  là hai góc đồng vị.

Suy ra DE // BC

Do đó BDEC là hình thang.

Lại có  = 

Nên BDEC là hình thang cân.

b) Với =500

Ta được  =  =  =  = 650

=1800 - = 1800 - 650=1150