Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
I K C A B
Giải:
a/ Xét \(\Delta ACI\) và \(\Delta BCI\) có:
AI: chung
\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)
AC = BC (gt)
=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)
=> AI = BI (c t/ứng)(đpcm)
b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)
\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)
mà \(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)
=> \(\widehat{AIC}=\widehat{BIC}=90^o\)
=> CI _l_ AB
Vì AI = BI mà AB = 6
=> AI = BI = 3
Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)
hay \(CI^2+3^2=5^2\)
\(\Rightarrow CI^2=5^2-3^2=16\)
\(\Rightarrow CI=4\left(cm\right)\)
c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\) và \(\Delta BCK\) có:
AK: chung
AC = BC (gt)
=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)
=> CK là tia p/g của góc ACB (1)
Lại có: CI là tia p/g của góc ACB (gt)
=> CK trùng CI
=> 3 điểm C, I, K thẳng hàng (đpcm)
a: Xét ΔBHI và ΔBMI có
BH=BM
góc HBI=góc MBI
BI chung
Do đó: ΔBHI=ΔBMI
Suy ra: góc BHI=góc BMI=90 độ
=>IM vuông góc với BC
b: Xét ΔIMC vuông tại M và ΔIKC vuông tại K có
CI chung
góc MCI=góc KCI
Do đó: ΔIMC=ΔIKC
Suy ra: góc CIM=góc CIK
c: BH=BM
CM=CK
Do đó: BH+CK=BM+CM=BC
a)ta co: dh=dk(tc tia phan giac cua mot goc)
goc d1=d2(gt)
da: canh chung
=> hk=dk => da la duong trung truc cua hk.
=> dhk la tam giac deu.
b) loang ngoang kho hieu luc khac giai
A B C D K H I
a. Do D thuộc đường phân giác của góc BAC nên DH = DK, hay ta, giác DHK cân.
Cũng do AD là phân giác của góc BAC nên \(\widehat{KAD}=\widehat{DAH}=60^0\)
Lại có: \(\widehat{KAD} + \widehat{ADK}=90^0, \widehat{KAD}=60^0 \Rightarrow \widehat{ADK}=30^0.\)
Tương tự như vậy, \(\widehat{ADH}=30^0\). Từ đó ta dễ thấy rằng \(\widehat{HDK}=60^0\).
Tam giác cân DHK có một góc bằng \(60^0\) nên DHK là tam giác đều.
b. Ta thấy góc IAC kề bù với góc BAC nên \(\widehat{IAC}=180^0-120^0=60^0\)
Lại có do AD song song CI nên \(\widehat{ACI}=\widehat{DAC}=60^0\) (So le trong)
Tam giác ACI có 2 góc bằng \(60^0\) nên góc còn lại cũng bằng \(60^0\) và đó là tam giác đều.
PS: Chú ý đến các giải thiết liên quan tới đối tượng cần chứng minh để tìm cách giải em nhé, chúc em học tốt ^^