K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017
Cm DCE thang hang
2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàngBài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O)...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàng

Bài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O) lần lươt tại D và E . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IE cắt AB tại P và ID cắt AC tại Q . Chứng minh : 3 điểm P,G,Q thẳng hàng

Bài 3 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường phân giác BM và CN của tam giác ABC cắt nhau tại  K . Đường thẳng BM và CN cắt (O) tại E và F . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IF cắt AB tại P và IE cắt AC tại Q .Chứng minh : 3 điểm P,K,Q thẳng hàng

Lưu ý : bài toán số 2 và 3 được khai thác và mở rộng từ bài toán số 1 , một điều thú vị nữa là các bài toán 1,2,3 có nội dung tương đối giống nhau

Nguon : Near Ryuzaki - VMF

Lam ho mik bai 2+3  nha 

1
2 tháng 3 2020

Cả 3 bài này đều sử dụng định lí Pascal

B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)

NC cắt BM tại H; NI cắt AB  tại P ; MI cắt AC tại Q 

=> P; H ; Q thẳng hàng

B2: Xét các điểm ADCIBE  cùng thuộc đường tròn (O)

B3: Tương tự.