K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD có

M là trung điểm của AB(gt)

C là trung điểm của BD(B và D đối xứng nhau qua C)

Do đó: MC là đường trung bình của ΔABD(định nghĩa đường trung bình của tam giác)

⇒MC//AD và \(MC=\frac{AD}{2}\)(định lí 2 về đường trung bình của tam giác)

\(AN=ND=\frac{AD}{2}\)(N là trung điểm của AD)

nên MC=AN=ND

Xét tứ giác AMCN có MC//AN(MC//AD, N∈AD) và MC=AN(cmt)

nên AMCN là hình bình hành(dấu hiệu nhận biết hình bình hành)

Xét ΔABD có

M là trung điểm của AB(gt)

N là trung điểm của AD(gt)

Do đó: MN là đường trung bình của ΔABD(định nghĩa đường trung bình của tam giác)

⇒MN//BD và \(MN=\frac{BD}{2}\)(định lí 2 về đường trung bình của tam giác)

\(BC=CD=\frac{BD}{2}\)(B và D đối xứng nhau qua C)

nên BC=MN=CD

mà AC=BC(ΔABC đều)

nên AC=MN

Hình bình hành AMCN có AC=MN(cmt)

nên AMCN là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b)

*Chứng minh E,C,N thẳng hàng

Ta có: AH là đường cao của ứng với cạnh BC của ΔABC đều(gt)

⇒AH cũng là đường trung tuyến ứng với cạnh BC

hay H là trung điểm của BC

⇒BH=HC

Xét ΔAHC vuông tại H và ΔBHE vuông tại H có

HC=BH(cmt)

\(\widehat{ACH}=\widehat{EBH}\)(So le trong, BE//AC)

Do đó: ΔAHC=ΔBHE(cạnh góc vuông-góc nhọn kề)

⇒AH=EH(hai cạnh tương ứng)

mà H nằm giữa A và E

nên H là trung điểm của AE

Xét tứ giác ACEB có

H là trung điểm của đường chéo BC(cmt)

H là trung điểm của đường chéo AE(cmt)

Do đó: ACEB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒EC//AB(hai cạnh đối của hình bình hành ACEB)

mà CN//AB(CN//AM, B∈AM)

và EC và CN có điểm chung là C

nên E,C,N thẳng hàng(đpcm)

21 tháng 3 2020

Mình làm nốt 2 ý còn lại.

b) Dễ dàng chứng minh tam giác ADE cân tại A.

Mặt khác ta có ^BAH = ^ADC = ^CAD

=> ^HAD = ^BAC = 60^0

Tam giác ADE cân tại A có ^BAC = 60^0 => tam giác ADE đều ( đpcm )

c) Vì BE // AC và AB // CE nên tứ giác ABEC là hình bình hành

Mà 2 đường chéo AE và BC vuông góc nên ABEC là hình thoi

\(\Rightarrow S_{ABEC}=\frac{1}{2}\cdot AE\cdot BC\)

Ta có: \(S_{ABD}=\frac{1}{2}\cdot AH\cdot BD=\frac{1}{2}\cdot AH\cdot2BC=AH\cdot BC=\frac{1}{2}\cdot AE\cdot BC=S_{ABEC}\)

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0
11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

22 tháng 5 2015

A B C F M E

a)ta có góc FAE=góc MEA=góc MFA=90o

=>AEMF là hình chữ nhật

b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F

MF chung

AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)

Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)

=>CF=AF (2 cạnh tương ứng)

=>F là trung điểm CA

mà F lại là trung điểm của MN 

=>MANC là hình bình hành

ta lại có CA vuông góc với MN

=>MANC là hình thoi

c)

ta có MC=MB ( AM là trung tuyến của BC)

ME song song AC (ME song song FA)

=> AE=EB

=>MF=AE(AEMF là hình vuông)

mà MF=NF(N là điểm đối xứng của M qua F)

      AE=EB(chưng minh trên)

=>MN=AB

Mà MN=AC( MANC là hình vuông)

nên : AB=AC

=> tam giác ABC vuông cân tại A

Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông

20 tháng 1 2019

hello how are you