K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

9 tháng 5 2016

áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(BC^2-AB^2=AC^2\)

\(15^2-9^2=AC^2\)

\(144=AC^2\)

\(AC=12\)(cm)

b)Có BC<AC<AB

=>A<B<C

c) xét tam giác CAB và tam giác CAD có :

CA chung

DA=AB

 góc CAB= gócCAD=90 độ

=>tam giác CAB=tam giác CAD(2 cạnh góc vuông)

=>CB=CD(2 cạnh tương ứng )

=>tam giác BCD cân

d) vì  A là trung điểm BD=>DA=DB=>CA là đường trung tuyến DB (1)

có K là trung điểm cạnh BC=>KB=KC=\(\frac{1}{2}\)BC=\(\frac{15}{2}\)=7,5 (cm) (2)

Từ (1) và(2)=>CA =CK=7,5(cm)(trong 1 tam giác vuông đường trung tuyến bằng 1 nửa cạnh huyền)

Từ (1) =>CM=\(\frac{2}{3}\)CA

         =>CM=\(\frac{2}{3}\times7,5\)

        =>CM=5(cm) 

4 tháng 5 2021

a, Ta có : ∆ ABC vuông tại A ( gt)

-> BC^2 = AB^2 + AC^2 ( đ/lí Pytago )

-> AC^2 = BC^2 - AB^2 

Mà BC = 10 cm ( gt ) ; AB= 6 cm ( gt) 

Nên AC^2 = 10^2 - 6^2

-> AC^2 = 100- 36

-> AC^2 = 64 

-> AC  = 8 cm

30 tháng 5 2021

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng

 

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

c: Xét ΔCDB có

BE,CA là trung tuyến

BE cắt CA tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC