Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E F I K L G N
Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.
Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800
Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)
Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)
Nên ^ECD = ^MKG hay ^ACB = ^MKG
Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)
=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)
Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG
Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)
Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng
Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)
MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)
Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).
O M C E F A B H K S P Q T I
a) Theo tính chất góc tạo bởi tia tiếp tuyến và dây thì ^MCE = ^MFC (Cùng chắn cung CE)
Suy ra: \(\Delta\)MEC ~ \(\Delta\)MCF (g.g) => MC2 = ME.MF (1)
Ta thấy: ^MKF = 900 (Góc nội tiếp chắn nửa đường tròn) => \(\Delta\)KMF vuông ở K
Xét \(\Delta\)KMF vuông tại K có đường cao KE => MK2 = ME.MF (2) (Hệ thức lượng trong tg vuông)
Từ (1) và (2) => MC = MK. Khi đó: \(\Delta\)MCS và \(\Delta\)MKS có: ^MCS = ^MKS (=900), MC=MK, SM cạnh chung
=> \(\Delta\)MCS = \(\Delta\)MKS (Cạnh huyền . Cạnh góc vuông) => CS = KS. Do đó MS là trung trực của CK
Hay MS vuông góc với KC (đpcm).
b) Gọi giao điểm của MS và KC là I. Theo hệ thức lượng: MC2 = MI.MS = ME.MF = MA.MB
=> Các tứ giác BAIS và SIEF nội tiếp => 2 đường tròn (P) và (Q) có 2 điểm chung là I và S
=> PQ là trung trực của IS => PQ vuông góc với IS tại trung điểm của IS. Mà IS vuông góc CK
Nên PQ // CK. Từ đó: PQ nằm trên đường thẳng chứa đường trung bình của \(\Delta\)CKS (PQ //CK)
Vậy thì PQ đi qua trung điểm của KS. Hay PQ đi qua T => 3 điểm P,Q,T thẳng hàng (đpcm).
Gọi a là độ dài cạnh của tam giác ABC
+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)
\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)
\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)
\(\Rightarrow x+y+z=h\) ( do \(\frac{1}{2}a\ne0\) )
+ \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
<=> M là giao điểm 3 đg phân giác của tam giác ABC
Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC