K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a) Xét tam giác AMN và tam giác CMD có:

       MN = MD ( M là trung điểm của ND)

       Góc NMA = góc DMC ( đối đỉnh)

       MA = MC ( M là trung điểm của AC )

   => tam giác AMN  = tam giác CMD ( c-g-c)

   => Góc NAM = góc DCM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong => AN//DC=> AB//DC ( vì A, N, B là 3 điểm tạo nên cùng 1 đường thẳng).

b) Ta có: AN = DC ( tam giác AMN = tam giác CMD)

       Mà  AN = NB ( N là trung điểm của AB)

        => DC = NB

    Xét tam giác NCB và tam giác CND có:

        NC là cạnh chung

        Góc BNC = góc DCN( so le trong, NB//DC)

        NB = DC (cmt) 

    => tam giác NCB =  tam giác CND ( c-g-c)

    => Góc BCN = góc DNC ( 2 góc tương ứng)

  Mà 2 góc này ở vị trí so le trong => ND//BC=> ND//BE

c) Ta có: ND//BE(cmt)=> NM//BC=> BCMN là hình thang (1)

    Ta có: AB = AC (gt)

        => Góc ABC = góc ACB ( quan hệ giữa góc và cạnh đối diện)

        => Góc NBC = góc MCB (2)

   Từ (1) và (2) => BCMN là hình thang cân

Xét tam giác AMD và tam giác CMN có:

    MA = MC ( M là trung điểm của cạnh AC)

    Góc DMA  = góc NMC ( đối đỉnh)

    MN = MD ( M là trung điểm của cạnh ND)

  => Tam giác AMD = tam giác CMN (c-g-c)

  => Góc DAM = góc NCM ( 2 góc tương ứng)

 Mà 2 góc này ở vị trí so le trong => AE//NC => ANCE là hình thang

d) BD>NE  

        

26 tháng 12 2024

Lời giải chi tiết bài toán:

Đề bài:

Cho tam giác ABCABC vuông tại AA, có AB=aAB = a. Gọi M,N,DM, N, D lần lượt là trung điểm của AB,BC,ACAB, BC, AC.

  1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài của NDND theo aa.
  2. Chứng minh tứ giác ADNMADNM là hình chữ nhật.
  3. Gọi QQ là điểm đối xứng của NN qua MM. Chứng minh AQBNAQBN là hình thoi.
  4. Trên tia đối của tia DBDB lấy điểm KK sao cho DK=DBDK = DB. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng.
Bài giải: 1. Chứng minh NDND là đường trung bình của tam giác ABCABC và tính độ dài NDND:
  • NN là trung điểm của BCBCDD là trung điểm của ACAC, theo định nghĩa đường trung bình:
    NDND song song với ABABND=12ABND = \frac{1}{2}AB.

  • Do AB=aAB = a, suy ra ND=12aND = \frac{1}{2}a.

Kết luận: NDND là đường trung bình của tam giác ABCABC, và ND=12aND = \frac{1}{2}a.

2. Chứng minh tứ giác ADNMADNM là hình chữ nhật:
  • MM là trung điểm của ABAB, nên AM=MB=12AB=12aAM = MB = \frac{1}{2}AB = \frac{1}{2}a.

  • ND∥ABND \parallel ABND=12ABND = \frac{1}{2}AB (tính chất đường trung bình).

  • AM⊥ABAM \perp AB (tam giác vuông tại AA), nên AM⊥NDAM \perp ND.

  • Tứ giác ADNMADNM có:

    • AD∥MNAD \parallel MN (vì cùng vuông góc với ABAB).
    • AM⊥NDAM \perp ND.

Do đó, ADNMADNM là hình chữ nhật.

3. Chứng minh AQBNAQBN là hình thoi:
  • QQ là điểm đối xứng của NN qua MM, nên MQ=MNMQ = MN.

  • MM là trung điểm của ABAB, suy ra AQ=BN=AB=aAQ = BN = AB = a.

  • Trong hình chữ nhật ADNMADNM:

    • AM=ND=12aAM = ND = \frac{1}{2}a, và MM là trung điểm của ABAB.
  • Tứ giác AQBNAQBN có:

    • AQ=BNAQ = BN.
    • AB=QN=aAB = QN = a.

Vậy AQBNAQBN là hình thoi.

4. Chứng minh 3 điểm Q,A,KQ, A, K thẳng hàng:
  • Trên tia đối của tia DBDB, lấy điểm KK sao cho DK=DBDK = DB.

  • QQ đối xứng với NN qua MM, nên MQ=MNMQ = MN.

  • Trong tam giác vuông ABCABC, DDMM lần lượt là trung điểm của ACACABAB:

    • DB=AC2+AB22=a2+AC22DB = \frac{\sqrt{AC^2 + AB^2}}{2} = \frac{\sqrt{a^2 + AC^2}}{2}.
    • DK=DBDK = DB, nên KK nằm trên đường thẳng qua DD kéo dài.
  • AQBNAQBN là hình thoi, nên AQAQ song song với DBDB. Kết hợp với vị trí của KK, suy ra Q,A,KQ, A, K thẳng hàng.

Kết luận:
  1. NDND là đường trung bình của tam giác ABCABC, ND=12aND = \frac{1}{2}a.
  2. ADNMADNM là hình chữ nhật.
  3. AQBNAQBN là hình thoi.
  4. Ba điểm Q,A,KQ, A, K thẳng hàng.
17 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có: MN//BC

D\(\in\)NM

Do đó; MD//CB

ta có: \(MN=\dfrac{CB}{2}\)

\(MN=\dfrac{MD}{2}\)

Do đó:CB=MD

Xét tứ giác BMDC có

BC//MD

BC=MD

Do đó: BMDC là hình bình hành

b: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

nên AMCD là hình bình hành

17 tháng 12 2023

Anh ơi anh giúp em câu hỏi em mới đăng với nha anh thanks anh nhiều lắm ạ

29 tháng 11 2021

ok

29 tháng 11 2021

a: Xét tứ giác ADCP có 

N là trung điểm của AC
N là trung điểm của DP

Do đó: ADCP là hình bình hành