K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Hình bạn tự vẽ nhá :v 

Vì tam giác ABC là tam giác đều 

=> AI vừa là đường cao , vừa là đường trung tuyến ứng với BC 

=> I là trung điểm BC 

=> IC = 6:2 = 3 cm 

Xét tam giác AIC vuông tại I 

Áp dụng định lí Pitago , ta có : 

AI2 = IC2 + AC2

=> AI2 = 32 + 62 = 9+36 = 45 

=> AI = √45 ( vì độ dài AI luôn dương)

 

 

31 tháng 12 2021

Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AI vuông góc với BC. Độ dài cạnh AI là:

A. 3√3 cm

B. 3 cm

C. 3√2 cm

D. 6√3 cm

31 tháng 12 2021

Good job!

26 tháng 6 2023

                        loading...

     IC = \(\dfrac{1}{2}\)BC (vì trong tam giác đều đường cao cũng là trung tuyến, đường trung trực, đường phân giác của tam giác đó).

    IC = 6 \(\times\) \(\dfrac{1}{2}\) = 3 (cm)

   Xét \(\Delta\)AIC  vuông tại C nên theo pytago ta có:

      AI2 = AC2 - IC2 = 62 - 32 = 27 (cm)

     AI = \(\sqrt{27}\) = 3\(\sqrt{3}\)(cm)

Chọn A. 3\(\sqrt{3}\)cm

 

 

a: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

b: Ta có: I là trung điểm của BC

nên IB=IC=4cm

Xét ΔAIB vuông tại I có

\(AB^2=AI^2+BI^2\)

hay \(AB=2\sqrt{13}\left(cm\right)\)

c: Xét ΔAMI vuông tại M và ΔANI vuông tại N có 

AI chung

\(\widehat{MAI}=\widehat{NAI}\)

Do đó; ΔAMI=ΔANI

Suy ra; IM=IN

d: Xét ΔABC có 

AM/AB=AN/AC

Do đó: MN//BC

21 tháng 3 2017