Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShift STOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
Sử dụng trên Fx 570ES-Plus
Dựa vào hình vẽ, ta tính được
AB=52−−√AC=160−−−√BC=10AB=52AC=160BC=10
Lần lượt gán:
52−−√52 ShiftShiftSTOSTO AA
160−−−√ShiftSTOB160ShiftSTOB
10ShiftSTOC10ShiftSTOC
(A+B+C):2ShiftSTOD(A+B+C):2ShiftSTOD
Sử dụng công thức herong
Bấm D(D−A)(D−B)(D−C)−−−−−−−−−−−−−−−−−−−−−√D(D−A)(D−B)(D−C)
Kết quả ra 36
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{C}=28^0\)
Xét ΔACH vuông tại H có
\(AH=CH\cdot\tan28^0\)
\(=20.3\cdot\tan28^0\)
\(\Leftrightarrow AH\simeq10,793701\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AH^2+CH^2=AC^2\)
\(\Leftrightarrow AC^2=10.793701^2+20.3^2\)
hay \(AC\simeq22,991172\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\simeq5,739112\left(cm\right)\)
\(\Leftrightarrow BC\simeq26.093112\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB\simeq12,339226\left(cm\right)\)
Chu vi tam giác ABC là:
C=AB+AC+BC
\(=12.339226+22.991172+26.093112\)
\(=64.423510\left(cm\right)\)
* Áp dụng định lý Py-ta-go vào tam giác vuông lần lượt có các cạnh huyền là AB, AC, BC và sử dụng máy tính bỏ túi, tính được AB ≈ 5,39cm; AC ≈ 5,39; BC ≈ 4,24cm.
Do chu vi của tam giác ABC là AB + BC + CA ≈ 15,02cm
*Diện tích tam giác ABC bằng diện tích hình vuông cạnh dài 5cm trừ đi tổng diện tích ba tam giác vuông xung quanh (có cạnh huyền lần lượt là AB, BC, CA). Tính được: S A B C = 10,5 ( c m 2 ).