K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAED và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)

\(\widehat{EAD}=\widehat{CAB}\)

Do đó: ΔAED\(\sim\)ΔACB

Suy ra: \(\widehat{AED}=\widehat{ACB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà EC=BD

nên BEDC là hình thang cân

5 tháng 9 2017

1,

A D C B 1 2 E 6 1 2

a, Áp dụng định lý Pi-ta-go vào \(\Delta ABC\)

\(BC=\sqrt{8^2+6^2}\)

       \(=10cm\)

b, Xét chung \(\Delta BEC\)và \(\Delta DEC\)

                     \(EC\)chung 

                   \(BC=CD\hept{\begin{cases}\Delta BEC\\\Delta DEC\end{cases}}\)

                  \(G=\widehat{G}\)

\(\Delta ABC\)và \(\Delta ACD\)có \(\widehat{A_1}=\widehat{A_2};AB=AD;AC\)chung

\(\Rightarrow\Delta ABC=\Delta ACD\Rightarrow BC=CD;\widehat{G}=\widehat{G_2}\)

P/s: Dựa vào đây mà làm

23 tháng 11 2021

\(a,BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(b,\) Vì A là trung điểm BE và CK nên BCEK là hbh

Mà \(BE\perp CK\) tại A nên BCEK là hthoi

Đó sẽ là hình thang cân DECB. 
Trong bài tập này có 2 điều bạn phải làm rõ được: 
DE // BC và DC = BE. 
Chúng ta sẽ cùng làm từng điều một: 
- DE // BC: 
Giả thiết cho tam giác ABC cân A => AC = AB. 
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc 
=> góc ADE = ACB => DE // BC. 

học tốt nhé cậu

15 tháng 6 2019

chép từ người khác à